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Abstract—

This paper describes an on-board localization system for a
swarm of ground robots. The motivation is in entertainment
robotics - each robot conceptually provides one mobile illumi-
nated ’pixel’, and the whole swarm is used to create visual
effects. The requirements for this application are small robot
size, precise localization, and the ability to localize in a dense
deployment of robots.

An external sensor would offer a viable approach for
localization, but is not suitable because it constrains straight-
forward system deployment for a variety of situations. Instead
we describe an on-board system based on computer vision,
fitting each robot with a camera and processor. Localization is
achieved by utilizing (a) absolute measurements from known
fixed landmarks around the swarm arena, and (b) relative
measurements between robots. Robots that are at the center of
a dense swarm may be surrounded by neighbors and blocked
from viewing landmarks. In this situation, the outer robots
detect landmarks, and location information is effectively propa-
gated throughout the swarm via relative measurements between
robots. The method builds on previous work in simulation with
a central computer and a single Extended Kalman Filter to
estimate relative positioning in a swarm. We extend the previous
work both by incorporating absolute measurements, and by
demonstrating a real implementation with physical robots.

It would require significant on-board compute power to
realize this system if the fixed landmarks and neighboring
robots were detected using natural features. We bypass this
issue by using fiducial markers both as landmarks and as
identity markers on robots. This enables the focus of the work
to stay on the localization algorithm as the main contribution
of the paper, while the computer vision is a self-contained
component that could be enhanced later. Experimental results
are provided for a swarm of five differentially driven robots.

I. INTRODUCTION

The miniaturization of components and reductions in costs
has led to a rise in multi-robot applications. A multi-robot
entertainment application, in which tens of small mobile
robots create a novel kind of display, was presented in [1].
Localization was performed using an overhead camera.
However this approach reduces the ability to do ad-hoc
deployment in a range of settings. In contrast, this paper
provides an on-board, vision-based method for localization.
It is based on absolute measurements relative to fixed land-
marks plus relative measurements between robots, and is well
suited to scenarios where many robots interact and therefore
occlusions are frequent in the on-board camera images.

The method builds on the work of Martinelli et al [2] to
localize a team of robots using relative measurements. Mar-
tinelli’s algorithm is based on a single centralized Extended
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Fig. 1. On-board view of a robots in a crowded situation with occluded
environment. The retro-reflective balls on top of the robots are for the ground
truth measurement.

Kalman Filter (EKF), with the states of all robots in a single
state vector, and showed good performance in simulation.
We extend the work with two contributions - firstly we show
the use of absolute measurements relative to fixed landmarks
as well as the use of relative measurements between robots;
secondly we show real results for a set of physical robots.

This paper is organized as follows. Section II describes
currently available localization technology. Section III in-
troduces the hardware system and Section IV shows how
the system is modeled. Section V describes our localization
algorithm, and Section VI presents the experiments and
results. Section VII concludes and gives an outlook on future
work.

II. RELATED WORK

This section reviews existing localization methods.

A. Global Positioning System (GPS)

The accuracy of standard GPS is about 2m in many
environments. It can be enhanced by a new technique called
Real Time Kinematic (RTK). This allows the measurement
of position relative to a reference ground station with an
accuracy as low as 10cm. This is an outdoor technology.

B. Ultra Wide Band Localization

The Ultra Wide Band (UWB) radio standard and the cur-
rent development in fast signal analyzing hardware created
a completely new method for localization which reaches an
accuracy of down to lcm [3] and is robust against multipath
[4]. However the smallest hardware available today is a
similar size to our robots and therefore not applicable.



C. Ultrasonic Localization

A distance measurement with an accuracy below lcm can
be achieved with ultrasonic sensors and common electronic
components [5]. A relative multi-robot localization system
based on ultrasound was developed and tested in [6]. Such a
system can easily be extended to fixed beacons for absolute
position measurements as needed in this project. But the slow
speed of sound also introduces the problem of echoes and the
time needed to let them decline. The approach is impractical
for a large number of robots as we envisage.

D. Vision

A more modern approach for localization is the use of
computer vision. The field of research is facilitated by the
current rapid increase in computer power, making it possible
to run complex image processing algorithms in real time on
high resolution images.

1) Fiducial Marker: This paper uses the ARToolKit [7]
library developed at the University of Washington. Many
successors have followed [8] [9] with the same approach but
increased accuracy and error detection. The use of a special
marker make the processing demands small enough to run
on board the robot. A second benefit of this approach is the
ability to provide a unique identity for each robot.

E. Types of Environment

1) Known Environment: If the environment map is static,
localization can be done by using a recursive estimator like
a extended Kalman filter. This has the benefit of small and
constant computational complexity which allows it to run
on-board.

2) Unknown Environment - Simultaneous Localization
and Mapping (SLAM): If the map is unknown the SLAM
technique can be used to build the map at the same time the
robot is being localized. This brings flexibility. The down
side is a requirement for high compute power.

III. SYSTEM OVERVIEW

For testing the localization system small diverentially
driven E-Puck robots [10] are used.

The on-board computer extension contains a Gumstix
board with an ARM Cortex A8 CPU and has enough power
to run the ArtoolkitPlus on-board or to compress the image
and stream it to an external computer.

To avoid image distortion during fast robot rotations s
1.2Mpx global shutter camera is used. It is connected by
USB to the on-board computer and is set to stream images
with 7.5Hz.

For the optaining relative distance and orientation mea-
surements, five AR markers are placed on the robots in ex-
actly defined positions. The complete arrangement is shown
in Fig. 2.

A central computer runnning the algorithm is used with
a two way communication to all the robots. Wifi network
is used which allows to stream the images in real time to
a desktop computer to run more complex image processing
algorithm if needed.

Fig. 2. E-puck equiped with camera and AR-markers

As fiducial marker system the ARToolKitPlus software
[8] is used with BCH markers. This id-encoded AR marker
system allows up to 4096 uniquely identifyable markers in-
cluding a CRC error correction algorithm to restore partially
covered markers.

IV. MEASUREMENT AND MOTION MODEL

A. Motion Model

The states x and y define the position and 6 the orientation
of a robot. Given the previous state and the motor commands
the next robot state is predicted by:
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Where u, and u stands for the linear respectively angular
velocity commands, and 07 as the elapsed time between the
two states. The index k|k — 1 denotes the state k estimated
out of the given state k— 1. In (2) the predicted yaw angle
B(x—1 is limited to the range [—7, 7).

B. Measurement Model

There are two types of measurement which have to be
processed differently. The first and simplest case is when
a marker attached to the environment is detected as shown
in Fig. 3 on the left in blue. The second case is a relative
measurement when one robot is looking at another robot.
(Fig. 3 on the right side in red.)

1) Absolute Measurement Model: To model such a mea-
surement a total of three coordinate systems are involved.
Where O is the observing robot frame, C the camera frame,
W the world frame and M the marker frame.

The first coordinate transformation is the static position
of the camera mounted on the robot. It is named TCO and
measured out of the CAD model of the robot. The position of
the observing robot in the world frame is Tg’ . And the marker
position and orientation in relation to the map frame TAY,V .



The marker transformations are stored in the environment
map database and looked up by the detected marker ID.
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Using these transformations the 3D measurement provided
by ARToolKitPlus can be modeled:

Zm xpo cos(0p) —xc + ymo sin(6p)
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where: xy0 = Xu — X0, Ymo = ym —yo, o = 0y — 0.

2) Relative Measurement Model: The second case occurs
when a marker on another robot is sensed. In a relative robot
to robot measurement a total of four affine coordinate system
transformations have to be performed. The observing robot
frame O and its camera frame C can be used as shown before.
The two new frames are the coordinate system of the sighted
robot named S and the marker frame M in the sighted robot
frame. TSW can be calculated using the states of the sighted
robot and 7} is measured out of the CAD model and stored
in a lookup table for all five on-board markers. The complete
transformation between the observer camera and the marker
on a sighted robot is:

-1 —1
TG =T *TY  *T¥ «Tj. )
Out of this transformation, the measurement vector can be
calculated:

m
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On

xso cos(0p) —x¢ —Ys0 sin(6p) + xps cos(Bso) +yM sin(6sp)
= | Ysocos(8o) —xs0 sin(8o) + ym cos(8s0) —xum sin(6so)
65+ 6y — 6o

where: x50 = x5 — X0, Yso = ¥s — Yo, 0s0 = 0s — 6.

V. FILTER DESIGN

This section describes the design of the EKF. The EKF
fundamentals as well as the required design steps that were
taken are described in [11].
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Fig. 3. Coordinate frame transformations for two robots equiped with
marker and camera.

The EKF state consists of the states of all r robots
concatenated to one large state vector.

.
Xe = [Xk1,Xk2, - - X (7N

In the Kalman prediction step the new robot positions
Xix—1 and covariances Py, are estimated using the motion
model of the robot as derived in Equation (1) where k is the
discrete time and uy_; is the robot command which was
active during the time step.

Xipe—1 = f (X1 k-1, Wk—1) 8)
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For the covariance update in (9) the Jacobian of the robot
model Fy_; is used to propagate the uncertainty to the
current state. The Jacobian of the system model is used to
propagate the system error introduced during this step [12].
The Jacobian derivations are shown in Section V-A.

All measurements from all robots zj, are collected in a
measurement vector z with length n*r. Where is n the
number of measurements (which varies with time), and r
the number of robots.

7 = [z;(’l,...z;wf (10)

The EKF update equations are used to correct the esti-
mated position using the measurement information received
during this time step:

Xik = Xefe—1 + Kie(ze — h(Xpe—1)) an
P = (1 — KeHi) Py p, (12)
where K, is the Kalman gain derived as follows:
Sk = HyPy H] + Ry (13)
K =Py H/S. ', (14)

where Hy is the measurement Jacobian of this time step and
R; describes the error of the measurements.
The Jacobians of each individual measurement are con-

catenated to Hy as used in the update equations:
H H,,
Hll,n H/r,n k

Each column corresponds to a measurement and the rows
to the robots. Depending on the type of measurement H'; ,
is chosen differently for the involved robots. The remaining
H;, are set to zero. Therefore, if an absolute measurement
m is observed by robot i, the corresponding row results in:

[0,...,o,Hfﬁ’;fer"e’,o,...,o] .

For or a relative measurement m between robot i and j,
the corresponding row results in:

1observer ysighted
[O,...,O,H,»,m 0,0, 1M oo

The different measurement Jacobians are derived in Sec-
tion V-A.



The matrix R, consists of the error covariances of each
measurement placed on the diagonal. For each measurement
R’ m,m 18 derived as described in (21). Therefore Ry is given
by:

R/1’| 0

Ry = (16)
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A. Derivations of the Jacobians

The fundamental principle of the EKF is to linearize the
nonlinear system and measurement model at the estimated
system state to calculate the Jacobian matrices. In this section
the Jacobians are derived for the system model and the
measurement model for all the necessary modes.

1) Robot Motion Jacobian: This Jacobian depends only
on the robot orientation and the active robot command during
this timestep. This is a direct consequence of the simplified
robot motion model without taking the inertia into account
and is given by
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2) Measurement Jacobians: The partial derivation of the
measurement model with respect to the robot states gives
the EKF the information in which direction and magnitude a
measurement has to correct the robot states. This Jacobians
have to be calculated for both measurement types.

The case for an absolute measurement when sensing an
environment marker involves only the observing robot and
is calculated from (4):
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When a relative measurement between two robots is
sensed, both robots gain information and their position can
be updated. Therefore for both robots a Jacobian has to be
calculated with respect to their states and the measurement
model.

For the observing robot the measurement model in 6 is
derived with respect to its state:

H/observer _ ahm”d
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For the sighted robot the same measurement model (6)
can be used but derived with resphas to be partiallyect to the
sighted robot:

H/Sighted _ ahm,rel

o= (20)
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B. Time Delay Handling

Considering the relative big amount of data the on-board
computer of the robots has to handle and the unstable nature
of the Wifi connection (delays caused by disturbances in the
crowded frequency band) it becomes clear that time delays
are not negligeable. In fact the lag between a picture is

taken by the on-board camera and the final measurement
output from the ARToolKitPlus, including transmission over
Wifi, is around 150ms. If the Wifi gets disturbed during the
transmission, it can become easily 300ms.

To handle these lags in the sensor data a buffered Kalman
filter structure is designed. Therefore a defined number of
system states are saved together with a time stamp and each
image taken by the camera is marked with an exact time
stamp. After sending and processing the image, the measure-
ment is assigned to the corresponding state by searching for
the closest time stamp. To use this delayed measurements, the
next Kalman filter run has to start at the latest measurement
and propagate the new information up to the current system
state. Fig. 4 shows a schematic of the EKF state buffer with
delayed measurements.

time  EKF state measurements
predict tk Ty P, u
predict th—1 | Th—1, Poo1, up—1
predict _ update
predict tk," zkf'nvpkfnvukfn s Zk—mn
predict ' update

te—m | Th—m> Pk—m, Uk—m [® Zk—m

Fig. 4. Function scheme of the filter buffer and the information propagation
from delayed measurement to the current state

VI. EXPERIMENTS

In order to record the ground truth of the robots the motion
capture system built by Vicon! has been used. Fig. ?? shows
five e-puck robots equipped with retro-reflective balls for the
external ground truth measurement system driving a eight
figure. The parameters of the robot and the system are shown
in Table I. Localization is solely performed by on-board
vision.

TABLE I
E-PUCK SYSTEM DATA
wheel radius 7w = 0.0205[m]
wheel separation d = 0.053[m]
motor steps per revolution | steps =20
gear reduction gr=1/50

StepSmax = 1000[s~ 1]
Vinax = 0.129]m /]
Fywmax = 0.129 2/d = 486[rad/v]

max steps per seconds
max drive speed
max rotation speed

A. Sensor Error Identification

A robot was driven arround randomly by hand and in an
precomputed eight figure and the data where recorded. The
result of the data analysis showed no big influence of the
distance to the marker (z,;) on the measurement error for
you small distances of our setup. The error of x,, grows for
less than 10% when comparing a measurement distance to

Thttp://www.vicon.com
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Fig. 5. The error histograms of all three measurement variables and the

overlayed gaussian approximations calculated by MATLAB. The measured
variances are 0;: 0.026, o,: 0.029 and ocp: 0.508

the marker from 0.5m to 1.5m. In the marker orientation
measurement the major errors also have no dependency on
the distance, but there are a few outliers which grow linearly
with the distance. More details can be found in [13].

Considering the negligible influence of the distance it was
decided to use a static measurement error model for the
marker sensory system.

o 0 0
R,=|0 o 0 Q1)
0 0 op

As initial parameter for the error model the measurement
errors of the experiment were fitted to the approximated
gaussian as shown in Fig. 5.

B. Single Robot

To compare the single robot localization performance of
the filter, an eight trajectory was driven at two different
speeds. One run was driven with the velocity of 0.06m/s
which is about 50% of the maximum speed the robot can
drive. The same eight was driven with 0.08m/s to find out
how the odometry quality affects the position estimation. For
the system error model the parameters k; and k, are set to
2-10~* respectively 2- 1073, which were found by tuning
when driving an eight at 0.06m/s speed.

The scatter plot in Fig. 6 for the fast run shows the
difficulties the estimator had during the curve on both ends
of the eight. This is a direct consequence of the odometry
assumptions which do not match the reality any more in
this velocity range because of wheel slip during curves and
stepper motor slips during rapid velocity changes.

In Fig. 7 the position and orientation errors calculated out
of the recorded estimated position and the ground truth are
shown. The position error of the slow run is between Smm
and 7cm, for the fast run the position error lies between 4cm
and 13cm. The difference is even bigger in the orientation
error. For the slow run the error lies between —4° and 3°,
for the fast run it increases to —12° and 10°.

Fig. 6. Estimated (blue) and true (red) position of a robot driving an eight
at different speeds. Top 0.06m/s and bottom 0.08m/s.
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Fig. 7. Localization error while driving multiple eights with one robot at
a speed of 0.06m/s (blue) and 0.08m/s (red)

The main part of the position error is caused by the wrong
odometry assumptions, especially the orientation error. Fur-
thermore there is another error source which is strongly
dependent on rotational velocity. It is the shutter timing of the
camera which cannot be controlled by the camera driver and
therefore the timestamp of the image is not always absolute
precisely set. For example when rotating with 0.4rad /s and
given an image delay of one frame at 7.5Hz can result in
an image which is taken at a robot orientation of up to 3°
before the moment of the estimators assumption.

C. Multiple Robots

To measure the benefit of relative measurements in non
clustered trajectories, the same eight as before was driven



Fig. 8. Path of five robots while driving multiple eights at velocity of
0.06m/s. Each path in one color.
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Fig. 9. Comparison of the localization error for one (red) and five (blue)
robots driving an eight at 0.06m/s

with five robots. This allowed relative measurements in
the middle of the eight during the crossing. Again all the
estimated positions and orientation as well as the ground
truth measured by Vicon were recorded. The robots were
driving with the calibrated speed of 0.06m/s. Fig. 8 shows
the scatter plot of the estimated and true position of all five
robots driving five times the complete eight.

This experiment is shown in the accompanying video.
Where the view of one of the on-board cameras of a robots
is displayed as well as the real time position erstimation and
its covariance matrix.

The resulting position and orientation estimations are
displayed in Fig. 9 overlayed with the data recorded during
the slow run. The algorithm showed a reasonable good
performance. The average error of all robots over all driven
eight is at 2.02c¢m and the average orientation error at 1.56°
degree.

Comparing the two identical trajectories with one or five
robots in Fig. 9 a decrease of the position and orientation
error is visible. The average position error decreases from
2.90cm to 2.02cm and the orientation error from 1.86°
to 1.56°. This is a direct effect of the additional relative
measurement.

VII. CONCLUSION

This paper has described an on-board localization method
for a set of mobile robots using computer vision. The
presented algorithm was developed for an application in
entertainment robotics in which mobile robots are deployed
on a planar surface to create images. Fixed landmarks are
available around the robot arena to provide a known coor-
dinate frame. The localization method is able to propagate
localization information throughout the swarm, including to
robots which see their neighbors but which are occluded
from seeing the fixed landmarks. This is a suitable solution
for large sets of robots where occlusions are frequent. The
computer vision component uses fiducial markers, but a more
sophisticated vision system could be readily subsituted in
future work.

The algorithm uses a central computer, which introduces
known problems of scaling to large sets of robots. This
could be addressed by using a decentralized EKF. The main
challenges of such an approach are (a) to decide what data
is to be communicated between robots and what can be
neglected and (b) to avoid the need for each robot to need
the state and measurements of every other robot. These
challenges are suitable for future work.
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