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Model Predictive Contouring Control for Collision
Avoidance in Unstructured Dynamic Environments

Bruno Brito, Boaz Floor, Laura Ferranti and Javier Alonso-Mora

Abstract—This paper presents a method for local motion
planning in unstructured environments with static and moving
obstacles, such as humans. Given a reference path and speed,
our optimization-based receding-horizon approach computes a
local trajectory that minimizes the tracking error while avoiding
obstacles. We build on nonlinear model-predictive contouring
control (MPCC) and extend it to incorporate a static map by
computing, online, a set of convex regions in free space. We
model moving obstacles as ellipsoids and provide a correct bound
to approximate the collision region, given by the Minkowsky
sum of an ellipse and a circle. Our framework is agnostic to the
robot model. We present experimental results with a mobile robot
navigating in indoor environments populated with humans. Our
method is executed fully onboard without the need of external
support and can be applied to other robot morphologies such as
autonomous cars.

Index Terms—Collision Avoidance, Motion and Path Planning.

I. INTRODUCTION

Applications where autonomous ground vehicles (AGVs)
closely navigate with humans in complex environments require
the AGV to safely avoid static and moving obstacles while
making progress towards its goal. Motion planning and control
for AGVs are typically addressed as two independent problems
[1]. In particular, the motion planner generates a collision-free
path and the motion controller tracks such a path by directly
commanding the AGV’s actuators. Our method combines
both motion planning and control in one module, relying on
constrained optimisation techniques, to generate kinematically
feasible local trajectories with fast replanning cycles. More
specifically, we rely on a Model Predictive Controller (MPC)
to compute an optimal control command for the controlled
system, which directly incorporates the predicted intentions
of dynamic obstacles. Consequently, it reacts in advance to
smoothly avoid moving obstacles. We propose a practical
reformulation of the Model Predictive Contouring Control
(MPCC) approach [2], namely, a Local Model Predictive
Contouring Control (LMPCC) approach, suitable for real-time
collision-free navigation of AGVs in complex environments
with several agents. Our design is fully implemented on board
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Fig. 1: The faculty corridor was the scenario used to evaluate
the capabilities of our method to avoid dynamic obstacles.

of the robot including localization and environment perception,
i.e., detection of static obstacles and pedestrians. Our design
runs in real time thanks to its lightweight implementation. The
method relies on an open-source solver [3] and will be released
with this paper as a ROS module. Our method can be adapted
to other robot morphologies, such as cars.

A. Related Work

Collision avoidance in static and dynamic environments
can be achieved via reactive methods, such as time-varying
artificial potential fields [4], the dynamic window [5], so-
cial forces [6] and velocity obstacles [7]. Although these
approaches work well in low speed scenarios, or scenarios
of low complexity, they produce highly reactive behaviours.
More complex and predictive behaviour can be achieved by
employing a motion planner. Our method relies on model
predictive control (MPC) [8], [9] to obtain smooth collision-
free trajectories that optimize a desired performance index,
incorporate the physical constraints of the robot and the
predicted behavior of the obstacles.

Due to the complexity of the motion planning problem,
path planning and path following were usually considered
as two separate problems. Many applications of MPC for
path-following control are found in the literature, e.g., [10],
[11]. These methods assume the availability of a collision-
free smooth path to follow. In contrast, we use MPC for local
motion planning and control in the presence of static and
dynamic obstacles.

Several approaches exist for integrated path following and
control for dynamic environments. These include: employing a
set of motion primitives and optimizing the control commands
to execute them [12] and offline computation of tracking
error bounds via reachability analysis that ensures a safety
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region around the robot for online planning [13], [14]. These
approaches, however, do not allow to incorporate the predicted
intentions of the dynamic obstacles and consequently, can
lead to reactive behaviors. To overcome the latter issue, [15]
proposed the model predictive contouring control (MPCC) that
allows to explicitly penalize the deviation from the path (in
terms of contouring and lateral errors) and include additional
constraints. Later, [16] designed a MPC for path following
within a stable handling envelope and an environmental enve-
lope. While [16] is tailored to automotive applications without
dynamic obstacles, MPCC has been employed to handle static
and dynamic obstacles in structured driving scenarios [2].
There, static collision constraints were formulated as limits
on the reference path and thus limited to on-the-road driving
scenarios. The previous approaches do not account for the
interaction effects between the agents and may fail in crowded
scenarios, a problem known as the freezing robot problem
(FRP) [17]. Interaction Gaussian Processes (IGP) [18] can be
used to model each individual’s path. The interactions are
modeled with a nonlinear potential function. The resulting
distribution, however, is intractable, and sampling processes
are required to approximate a solution, which requires high
computational power and is only real-time for a limited
number of agents. Learning-based approaches address this
issue by learning the collision-avoidance strategy directly from
offline simulation data [19], or the complex interaction model
from raw sensor readings [20]. Yet, both methods learn a
reactive collision avoidance policy and do not account for the
kinodynamic constraints of the robot.

Without explicitly modeling interaction, we propose a
method for local motion planning, which is real-time, incor-
porates the robot constraints and optimizes over a prediction
horizon. Our approach relies on MPCC and extends it to
mobile robots operating in unstructured environments. Similar
to [21], among others, we employ polyhedral approximations
of the free space, which can provide larger convex regions
than safety bubbles [22].

B. Contribution
We build on [2], with the following contributions to make

the design applicable to mobile robots navigating in unstruc-
tured environments with humans:
• A static obstacle avoidance strategy that explicitly con-

strains the robot’s positions along the prediction horizon
to a polyhedral approximation of the collision-free area
around the robot.

• A closed-form bound to conservatively approximate col-
lision avoidance constraints that arise from ellipsoidal
moving obstacles.

• A fully integrated MPCC approach that runs in real-time
on-board of the robot and with on-board perception.

We present experimental results with a mobile robot navigating
in indoor environments among static and moving obstacles
and compare them with three state-of-art planners, namely
the dynamic window [5], a classical MPC for tracking [11]
and a socially-aware motion planner [23]. Finally, to illustrate
the generality of the proposed MPCC framework, we present
results with a simulated car.

II. PRELIMINARIES

A. Robot description

Let B denote an AGV on the plane W = R2. The AGV
dynamics are described by the discrete-time nonlinear system

z(t+ 1) = f(z(t),u(t)), (1)

where z(t) and u(t) are the state and the input of the robot,
respectively, at time t ≥ 01. For the case of our mobile robot
we consider the state to be equal to the configuration, that is,
z(t) ∈ C = R2×S . For the case of a car (Sec. IV-E), the state
space includes the speed of the car. The area occupied by the
robot at state z is denoted by B(z). which is approximated by
a union of nc circles, i.e., B(z) ⊆

⋃
c∈{1,...,nc} Bc(z) ⊂ W .

The center of each circle, in the inertial frame, is given by
p+RWB (z)pBc . Where p is the position of the robot (extracted
from z), RWB (z) is the rotation matrix given by the orientation
of the robot, and pBc is the center of circle c expressed in the
body frame.

B. Static obstacles

The static obstacle environment is captured in an occupancy
grid map, where the area occupied by the static obstacles
is denoted by Ostatic ⊂ W . In our experiments we consider
both a global map, which is built a priori and used primarily
for localization, and a local map from the current sensor
readings. Therefore, the static map is continuously updated
locally. Dynamic obstacles, such a people, that are recognized
and tracked by the robot are removed from the static map and
considered as moving obstacles.

C. Dynamic obstacles

Each moving obstacle i is represented by an ellipse of area
Ai ⊂ W , defined by its semi-major axis ai, its semi-minor
axes bi, and a rotation matrix Ri(ψ). We consider a set of
moving obstacles i ∈ I := {1, . . . , n}, where n can vary
over time. The area occupied by all moving obstacles at time
instant t is given by Odyn

t =
⋃
i∈{1,...,n}Ai(zi(t)), where

zi(t) denotes the state of moving obstacle i at time t. In this
work, and without a loss of generality, we assume a constant
velocity model with Gaussian noise ωo(t) ∼ N (0, Qo(t))
in acceleration, that is, p̈i(t) = ωi(t), where pi(t) is the
position of obstacle i at time t. Given the measured position
data of each obstacle, we estimate their future positions and
uncertainties with a linear Kalman filter [24].

D. Global Reference Path

Consider that a reference path is available. In its simplest
form, the reference path can be a straight line to the goal
position or a straight line in the direction of preferred motion.
But it could also be given by a global planner. We consider
a global reference path P consisting of a sequence of path
segments connecting M way-points prm = [xpm, y

p
m] ∈ W

with m ∈ M := {1, . . . ,M}. For smoothness, we consider

1In the remainder of the paper we omit the time dependency when it is
clear from the context.
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that each path segment ςm(θ) is defined by a cubic polynomial.
We denote by θ a variable that (approximately) represents
the traveled distance along the reference path, and which is
described in more detail in Sec. III-C3. We do not require the
reference to be collision free, therefore, the robot may have
to deviate from it to avoid collisions.

E. Problem Formulation

The objective is to generate, for the robot, a collision free
motion for N time-steps in the future, while minimizing a
cost function J that includes a penalty for deviations from the
reference path. This is formulated in the optimization problem

J∗ = min
z0:N ,u0:N−1,θ0:N−1

N−1∑
k=0

J(zk,uk, θk) + J(zN , θN )

s.t. zk+1 = f(zk,uk), θk+1 = θk + vkτ, (2a)

B(zk) ∩
(
Ostatic ∪Odyn

k

)
= ∅, (2b)

uk ∈ U , zk ∈ Z , z0, θ0 given. (2c)

Where vk is the forward velocity of the robot (for the mobile
robot it is part of the input and for the car it is part of the state),
τ is the time-step and Z and U are the set of admissible states
and inputs, respectively. z1:N and u0:N−1 are the set of states
and control inputs, respectively, over the prediction horizon
Thorizon, which is divided into N prediction steps. θk denotes
the predicted progress along the reference path at time-step
k. By solving the optimization problem, we obtain a locally
optimal sequence of commands [u∗t ]

t=N−1
t=0 to guide the robot

along the reference path while avoiding collisions with static
and moving obstacles.

III. METHOD

The proposed method consists of the following steps, which
are executed in every planning loop.

1: Search for a collision-free region in the updated static
map centered on the robot and constrain the control problem
such that the robot remains inside (Section III-A).

2: Predict the future positions of the dynamic obstacles
and use the corrected bound to ensure dynamic collision
avoidance (Section III-B).

3: Solve a modified MPCC formulation applicable to
mobile robots (Section III-C).

A. Static collision avoidance

Given the static map of the environment, we compute a set
of convex four-sided polygons in free space. This represen-
tation can provide larger collision-free areas compared with
other approximations such as circles.

To obtain the set of convex regions at time t, we first
shift the optimal trajectory computed at time t − 1, namely,
q0:N = [p∗1:N |t−1, qN ], where qN is a extrapolation of the
last two points, that is, qN = 2p∗N |t−1 − p∗N−1|t−1. Then,
for each point qk (k = 1, ..., N ) we compute a convex
region in free space, given by a set of four linear constraints
cstat
k (pk) =

⋃4
l=1 c

stat,l
k (pk). This region separates qk from

Fig. 2: Representation of the convex free space (orange
squares) around each prediction step on the prediction horizon
(purple line) with respect to the inflated static environment and
the collision space of the dynamic obstacle (green ellipses)
with respect to the vehicle representing discs (blue).

the closest obstacles. In our implementation we compute a
rectangular region aligned with the orientation of the trajectory
at qk, where each linear constraint is obtained by a search
routine and reduced by the radius of the robot circles rdisc.
Figure 2 shows the collision-free regions along the prediction
horizon defined as yellow boxes. At prediction step k for
a robot with state z the resulting constraint for disc j and
polygon side l is

cstat,l,j(z) = hl−~nl ·
(
p− RWB (z)pBj

)
> 0, (3)

where hl and ~nl define each side of the polygons.

B. Dynamic collision avoidance

Recall that each moving obstacle i is represented by its
position pi(t) and an ellipse of semi-axis ai and bi and a
rotation matrix Ri(ψ). For each obstacle i ∈ {1, . . . , n}, and
prediction step k, we impose that each circle j of the robot
does not intersect with the elliptical area occupied by the
obstacle. Omitting i for simplicity, the inequality constraint
on each disc of the robot with respect to the obstacles is

cobst,j
k (zk)=

[
∆xjk
∆yjk

]T

R(ψ)T
[ 1
α2 0
0 1

β2

]
R(ψ)

[
∆xjk
∆yjk

]
> 1, (4)

where the distance between disc j and the obstacle is separated
into its ∆xj and ∆yj components (Fig. 2). The parameters α
and β are the semi-axes of an enlarged ellipse that includes
the union of the original ellipse and the circle.

While previous approaches approximated the Minkowski
sum of the ellipse with the circle as an ellipse of semi-major
α = a + rdisc and semi-minor axis β = b + rdisc [2], this
assumption is not correct and collisions can still occur [25].
We now describe how to compute the values for α and β
such that collision avoidance is guaranteed, represented by the
larger in light red ellipsoid in Fig. 3.

Consider two ellipsoids E1 = Diag( 1
a2

1
b2 ) and E2 =

Diag
(

1
(a+δ)2 ,

1
(b+δ)2

)
. E1 is an ellipsoid with a and b as

semi-major and semi-minor axes, respectively. E2 represents
the ellipsoid E1 enlarged by δ in both axis. The goal is to
find the smallest ellipsoid that bounds the Minkowsky sum.
This is equivalent to find the minimum value of δ such that
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Fig. 3: Safety boundary computation. The ellipsoid with semi-
major axis and semi-minor axis, a and b respectively, is
represented in green, the ellipsoid with axis enlarged by rdisc
is represented in gray, the Minkowsky sum is represented in
black and the ellipsoid enlarged by δ is represented in red.

the minimum distance between ellipsoid E1 and E2 is bigger
than r2, the radius of the circle bounding the robot.

Lemma 1 ([26]). Let XTA1X = 1 and XTA2X = 1 be two
quadratics in Rn. Iff the matrix A1−A2 is sign definite, then
the square of the distance between the quadratic XTA1X = 1
and the quadratic XTA2X = 1 equals the minimal positive
zero of the polynomial.

F (z) = Dλ(detλA1 + (z − λA2)− λ(z − λA1A2))

where D stands for the discriminant of the polynomial treated
with respect to λ.

Considering A1 = E1, A2 = E2 and {δ, a, b, } ∈ R+ this
ensures that E1 − E2 is sign definite. Hence, we can apply
Lemma 1 to determine the polynomial F (z) and its roots. For
the two ellipsoids E1 and E2, the roots λ of F (z) are:

λ ∈



(2a(r + δ)3 + 2b(r + δ)3 + 4ab(r + δ)2

(a2 + 2ab+ 2ra+ b2 + 2rb
,

(r + δ)2,

4a2 + 4a(r + δ) + (r + δ)2,

4b2 + 4b(r + δ) + (r + δ)2


. (5)

The first two roots have multiplicity two. The minimum
distance equation is the square root of the minimal positive
zero of F (z). Thus, the minimum enlargement factor is found
by solving for the value of δ that satisfies minj λ(j) = r2.

A closed form formula can be obtained by noting that
the minj λ(j) is achieved for the first root and solving this
equation. Due to its length, it is not presented in this paper
but can be found at 3. This value of semi-axis α = a + δ
and β = b + δ guarantee that the constraint ellipsoid entirely
bounds the collision space.

2Note we use r instead of rdisc in the reminder of the section to simplify
the notation.

3A Mathemathica notebook with the derivation of the bound and
a Matlab script as example of its computation can be found in
http://www.alonsomora.com/docs/19-debrito-boundcomputation.zip.

C. Model Predictive Contouring Control

MPCC is a formulation specially tailored to path-following
problems. This section presents how to modify the baseline
method [2] and make it applicable to mobile robots navigating
in unstructured environments with on-board perception.

1) Progress on reference path: Eq. 2 approximates the
evolution of the path parameter by the travelled distance of
the robot. In each planning stage we initialize θ0. We find the
closest path segment, denoted by m, and compute the value
of θ0 via a line search in the neighborhood of the previously
predicted path parameter.

2) Selecting the number of path segments: As detailed in
Section II-D, the global reference is composed of M path
segments. To lower the computational load, only η ≤ M
path segments are used to generate the local reference that
is incorporated into the optimization problem. The number of
path segments η cannot be arbitrarily small, and there is a
minimum number of segments to be selected to ensure the
robot follows the reference path along a prediction horizon.
The number of path segments η in the local reference path
is a function of the prediction horizon length, the individual
path segment lengths, and the speed of the robot at each
time instance. We select a conservative η by considering the
maximum longitudinal velocity vmax and imposing that the
covered distance is lower than a lower bound of the travelled
distance along the reference path, namely,

τ

N−1∑
j=0

vj︸ ︷︷ ︸
Traveled dist.

≤τNvmax≤
m+η∑
i=m+1

||pr
i+1 − pr

i||︸ ︷︷ ︸
Waypoints dist.

≤
m+η∑
i=m+1

si︸ ︷︷ ︸
Ref. path length

, (6)

where m is the index of the closest path segment to the robot,
τ is the length of the discretization steps along the horizon,
and si the length of each path segment.

3) Maintaining continuity over the local reference path: We
concatenate the η reference path segments into a differentiable
local reference path Lr, which will be tracked by the LMPCC,
as follows

p̄r(θk) =

m+η∑
i=m

σi,+(θk)σi,−(θk)ςi(θk), (7)

where σi,−(θk) = 1/(1 + e(θ−
∑i

j=m si)/ε) and σi,+(θk) =

1/(1 + e(−θ+
∑i−1

j=m si)/ε) are two sigmoid activation functions
for each path segment and ε is a small design constant. This
representation ensures a continuous representation of the local
reference path needed to compute the solver gradients.

4) Cost function: For tracking of the reference path, a
contour and a lag error are defined, see Fig. 4 and combined
in an error vector ek := [ε̃c(zk, θk), ε̃l(zk, θk)]T, with

ek =

[
sinφ(θk) − cosφ(θk)
− cosφ(θk) − sinφ(θk)

] (
pk − p̄r(θk)

)
, (8)

where φ(θk) = arctan(∂yr(θk)/∂xr(θk) is the direction of
the path. Consequently, the LMPCC tracking cost is

Jtracking(zk, θk) = eTkQεek, (9)
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Fig. 4: Approximated contour and lag errors on the path
segment.

where Qε is a design weight.
The solution which minimizes the quadratic tracking cost

defined in Eq. 9 drives the robot towards the reference path.
To make progress along the path we introduce a cost term
that penalizes the deviation of the robot velocity vk from a
reference velocity vref, i.e., Jspeed(zk,uk) = Qv(vref − vk)2

with Qv a design weight. This reference velocity is a design
parameter given by a higher-level planner and can vary across
path reference segments.

To increase the clearance between the robot and moving
obstacles, we introduce an additional cost term similar to a
potential function,

Jrepulsive(zk) = QR

n∑
i=1

(
1

(∆xk)2 + (∆yk)2 + γ

)
, (10)

where QR is a design weight, and ∆xk, ∆yk represent the
components of the distance from the robot to the dynamic
obstacles. A small value γ ≥ 0 is introduced for numerical
stability. Eq. 10 adds clearance with respect to obstacles and
renders the method more robust to localization uncertainties.

Additionally, we penalize the inputs with Jinput(zk, θk) =
uTkQuuk, where Qu is a design weight.

The LMPCC control problem is then given by a receding
horizon nonconvex optimization, formally,

J∗= min
z0:N ,u0:N−1,θ0:N

N−1∑
k=0

J(zk,uk, θk)+J(zN , θN ) (11a)

s.t. : (2a), (2c), (11b)

cstat,l,j
k (zk) > 0, ∀j ∈ {1, . . . , nc}, l ∈ {1, ..., 4} (11c)

cobst,j
k (zk) > 1, ∀j ∈ {1, . . . , nc}, ∀ obst (11d)

where the stage cost is J(zk,uk, θk) := Jtracking(zk, θk) +
Jspeed(zk,uk)+Jrepulsive(zk)+Jinput(uk) and the terminal cost
is J(zN , θN ) := Jtracking(zN , θN )+Jrepulsive(zN ). Eq. 11c and
Eq. 11d are defined by Eq. 3 and Eq. 4, respectively. Algorithm
1 summarizes our method. Note that at each control iteration,
we solve (using [3]) Problem (11) until either a Karush-Kuhn-
Tucker condition [27] or the maximum number of iterations
(itermax) is satisfied (line 9). The selection of itermax

is empirically based on the maximum number of iterations
allowed within the sampling time of our system to guarantee
real-time performance.

Algorithm 1 Local Model Predictive Contouring Control

1: Given zinit, zgoal, Ostatic, Odyn
0 , and N

2: for t = 0, 1, 2, ... do
3: z0 = zinit
4: Estimate θ0 according to Section III-C1
5: Select η according to Eq. (6)
6: Build p̄r(θk), k = 1, ..., N , according to Eq. (7)
7: Compute cstat,j

k (pk) along q0:N

8: Get dynamic-obstacles predicted pose (Sec. III-B)
9: Solve the optimization problem of Eq. (11)

10: Apply u∗
0

11: end for

IV. RESULTS

This section presents experimental and simulation results
for three scenarios with a mobile robot. We evaluate different
settings for the parameters in our planner (Section IV-B),
as well as compare its performance in static (Section IV-C)
and dynamic (Section IV-D) environments against state of art
motion planners [11], [5], [23]. A video demonstrating the
results accompanies this paper.

A. Experimental setup

1) Hardware Setup: Our experimental platform is a fully
autonomous Clearpath Jackal ground robot, for which we
implemented on-board all the modules used for localization,
perception, motion planning, and control. Our platform is
equipped with an Intel i5 CPU@2.6GHz, which is used to
run the localization and motion planning modules, a Lidar
Velodyne for perception, and an Intel i7 NUC mini PC to run
the pedestrian tracker.

2) Software Setup: To build the global reference path we
first define a series of waypoints and we construct a smooth
global path by connecting the waypoints with a clothoid. We
then sample intermediate waypoints from this global path and
connect them with 3rd order polynomials, which are then used
to generate the local reference path.

The robot localizes with respect to a map of the environ-
ment, which is created before the experiments. For static col-
lision avoidance the robot utilizes a map that is updated online
with data from its sensors and we employ a set of rectangles
to model the free space. Our search routine expands the sides
of a vehicle-aligned rectangle simultaneously in the occupancy
grid environment with steps of ∆search = 0.05m, until either
an occupied cell is found or the maximum search distance
∆search

max = 2m is reached. Once an expanding rectangle side is
fixed as a result of an occupied cell, the rest of the rectangle
sides are still expanded to search for the largest possible area.
This computation runs in parallel to the LMPCC solver, in a
different thread, and with the latest available information. Our
experiments employ the open-source SPENCER Pedestrian
tracker and 2d laser data [28] for detection and tracking of
dynamic obstacles. If a pedestrian is detected, it is removed
from the static map and treated as a moving ellipse. Our
simulations use the open-source ROS implementation of the
Social Forces model [29] for pedestrian simulation.
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a) Visualization b) Top view

Fig. 5: Experiment for evaluation of performance

The LMPCC problem of Eq. 11 is nonconvex. Our planner
solves this problem online in real time using ACADO [3]
and its C-code generation tool. We use a continuous-time
kinematic unicycle motion model [30] to describe the robot’s
kinematics. The model is then discretized directly in ACADO
using a multiple-shooting method combined with a Gauss-
Legendre integrator of order 4, no Hessian approximations,
and a sampling time of 50 ms. We select qpOASES [31] to
solve the resulting QP problem and set a KKT tolerance of
10−4 and a maximum of 10 iterations. If no feasible solution
is found within the maximum number of iterations, then the
robot decelerates. The planner computes a new solution in the
next cycle. Based on our experience, this allowed to recover
the feasibility of the planner quickly. Our motion planner is
implemented in C++/ROS and will be released open source.

B. Parameter evaluation

To evaluate the performance of the planner we per-
formed several experiments at different reference speeds,
vref ∈ {1 m/s, 1.25 m/s, 1.5 m/s}, and prediction-horizon
lengths, THorizon ∈ {1 s, 3 s, 5 s}. The robot follows a figure-8
path (red line in Figure 5-(a)) while avoiding two pedestrians
(green ellipses) and staying within the collision-free area
(yellow rectangles). We use one circle to represent the planned
position of the robot (light blue circles). Each pedestrian is
bounded by an ellipse of semi-axis 0.3 m and 0.2 m. The pre-
dicted positions of the pedestrians are represented by a green
line. We align the semi-minor axis to the pedestrian walking
direction. For this experiment we rely on a motion capture
system to obtain the position of the obstacles and robot.
Figure 6 shows the computation time to solve the optimization
problem. For vref ∈ {1, 1.25, 1.5} m/s and THorizon ∈ {1, 3} s
the computation times are under 50 ms, which is lower than
the cycle-time defined for the planner. But, for THorizon = 5
s the 99th percentile is above the 50ms, not respecting the
real-time constraint. The cases in which the planner exceeds
the sampling time of the system are the situations in which
the pedestrians suddenly step in front of the robot or change
their direction of motion, requiring the solver more iterations
to find a feasible solution. If not all the constraints can be
satisfied, our problem becomes infeasible, and no solution is
found. In this case, we reduce the robot velocity, allowing the
solver to recover the feasibility after few iterations. Table I
summarizes the behavior of the planner in terms of clearance,

Fig. 6: Computation time required to solve the LMPCC
problem online for different velocity references and horizon
lengths. The central mark indicates the median. The bottom
and top edges of the box indicate the 25th and 75th percentiles,
respectively. The red crosses represent the outliers.

TABLE I: Clearance between the robot and the dynamic
obstacles for different velocity references and horizon lengths.

Prediction Horizon [s] Clearance Mean (1st percentile) [m]
vref = 1 vref = 1.25 vref = 1.5

1 1.54 (0.077) 1.60 (0.025) 1.69 (0.003)
3 1.66 (0.077) 1.69 (0.072) 1.82 (0.065)
5 1.69 (0.062) 1.68 (0.055) 1.92 (0.043)

that is, the distance from the border of the circle of the robot to
the border of the ellipse defining the obstacles. It demonstrates
that a short horizon leads to lower safety distances and more
importantly, that our method was able to keep a safe clearance
in most cases.

Based on these results, we selected a reference speed of 1.25
m/s and a horizon length of 3 s for the following experiments.

C. Static collision avoidance

In this experiment we compare the proposed planner with
two baseline approaches:
• A MPC tracking controller [11]. We minimize the devia-

tion from positions on the reference path up to 1 m ahead
of the robot.

• The Dynamic Window (DW) [5]. We use the open-source
ROS stack implementation. The DW method receives the
next waypoint once the distance to the current waypoint
is less than 1 m.

For this and the following experiment, we fully rely on
the onboard localization and perception modules. A VLP16
Velodyne Lidar is used to build and update a local map
centered in the robot for static collision avoidance. The prebuilt
offline map is only used for localization.

In this experiment the mobile robot navigates along a cor-
ridor while tracking a global reference path (red waypoints in
Figure 7). When it encounters automatic doors, the robot must
wait for them to open. When it encounters the obstacle located
near the third upper waypoint from the left, which was not in
the map, the robot must navigate around it. Figure 7 shows
the results of this experiment. All the three approaches are
able to follow the waypoints and interact with the automatic
door. When they encounter the second obstacle the classical
MPC design fails to proceed towards the next waypoint. The
DW and the LMPCC approaches are able to complete the task.
Both methods showed similar performance (e.g., the traveled
distance was 30.59 m for our LMPCC and 30.61 m for the
DW). The time to the goal was relatively higher for the DW
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Fig. 7: Static collision avoidance scenario. The red crosses
depict the path to follow (waypoints) and the colored points
are the laser scan data. The blue, green, and magenta lines
represent the trajectory obtained with the LMPCC,the MPC
tracking controller, and the Dynamic Window, respectively.

(50 s) compared to the LMPCC (41 s). This difference is
mainly due to the ability of the LMPCC to follow a reference
velocity. In addition, we tested DW and LMPCC in a scenario
where half of the first door does not open due to malfunction.
In such scenario, the LMPCC was able to traverse around the
broken door while the DW gets into a deadlock state due to
the narrow opening. A video of the experiments accompanies
the paper.

D. Dynamic collision avoidance

Our simulations compare our planner with an additional
baseline: a socially-aware motion planner named Collision
Avoidance with Deep RL (CADRL) [23]. We employ the
open-source ROS stack implementation. The CADRL method
receives the same waypoints as the DW method.

1) Simulation Results: We compare the performance of
the MPCC planner with the DW and CADRL baselines in
the presence of pedestrians. Figure 1 shows the setup of our
experiment. To avoid the overlap of the static and dynamic
collision constraints, the detected pedestrians are removed
from the updated map used for static avoidance and modeled
as ellipses with a constant velocity estimate. The global path,
as described in Section IV-A, consists of a straight line along
the corridor. The robot has to follow this path while avoiding
collisions with several pedestrians moving in the same or
opposite direction. In this experiment, we do not evaluate
the MPC tracking controller since it was unable to complete
the previous experiment. Aggregated results in Table II show
that the LMPCC outperforms the other methods. It achieves
a considerably lower failure rate, smaller traveling distances,
and maintains larger safety distances to the pedestrians. Only
for the four pedestrians case, the DW achieved larger mean
clearance, but with larger standard deviation. By accounting
for the predictions of the pedestrians, our method can react
faster and thus generate safer motion plans. Table II also shows
that the number of failures grows with the number of agents.
Yet, our method can scale up to six pedestrians with low
collision probability and perform real-time. For larger crowds
our method would select the closer 6 pedestrians.

(a) LMPCC

(b) Dynamic Window

Fig. 8: Dynamic collision avoidance scenario. The red crosses
represent the global path to follow (waypoints). The blue and
magenta lines represent the trajectory executed by our LMPCC
(top) and by the Dynamic Window (bottom), respectively. The
trajectories of the two pedestrians are represented by the green
and magenta circles. In the lower case (dynamic window) the
robot reacts late and the pedestrians must actively avoid it.

2) Experimental Results: We use the previous setup to
compare the LMPCC and DW methods on a real scenario with
two pedestrians. We do not test the CADRL method because
the current open-source implementation does not allow static
collision avoidance for unconstrained scenarios such as the
faculty corridor depicted in Figure 8. Figure 8 shows one
representative run of our method (top) and the DW (bottom).
We observe that the proposed method reacts in advance to
avoid the pedestrians, resulting in a larger clearance distance.
In contrast, the DW reacts late to avoid the pedestrian, which
has to avoid the robot himself actively. Our proposed method
was able to navigate safely in all of our experiments with static
and two pedestrians.

E. Applicability to an autonomous car

To validate the applicability of our method to more complex
robot models, we have performed a simulation experiment
with a kinematic bicycle model [32] of an autonomous car.
The planner commands the acceleration and front steering. The
car follows a global reference path while staying within the
road boundaries (i.e., the obstacle-free region) and avoiding
moving obstacles (such as a simulated cyclist proceeding in
the direction of the car and a pedestrian crossing the road in
front of the car). The accompanying video shows the results
where the autonomous vehicle successfully avoids the moving
obstacles, while staying within the road limits. We refer the
reader to [33] for more details and results.

V. CONCLUSIONS & FUTURE WORK

This paper proposed a local planning approach based on
Model Predictive Contouring Control (MPCC) to safely nav-
igate a mobile robot in dynamic, unstructured environments.
Our local MPCC relies on an upper bound of the Minkowski
sum of a circle and an ellipse to safely avoid dynamic
obstacles and a set of convex regions in free space to avoid
static obstacles. We compared our design with three baseline
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TABLE II: Statistic results of minimum distance to the pedestrians (where clearance is defined as the border to border distance),
traveling distance and percentage of failures obtained for 100 random test cases of the dynamic collision avoidance experiment
for n ∈ {2, 4, 6} agents. The pedestrians follow the social forces model [29].

# agents Clearance Mean (1st percentile) [m] % failures (% collisions / % stuck) Traveled distance Mean (Std.) [m]
DW CADRL LMPCC DW CADRL LMPCC DW CADRL LMPCC

2 0.28 (0) 0.15 (0) 0.29 (0.015) 20 (19 / 1) 4 (0 / 0) 2 (0 / 2) 17.99 (3.9) 19.27 (3.7) 15.81 (3.2)
4 0.46 (0) 0.32 (0) 0.25 (0.026) 35 (32 / 3) 31 (0 / 0) 5 (2 / 3) 19.43 (5.6) 21.34 (4.4) 15.77 (4.4)
6 0.06 (0) 0.33 (0) 0.38 (0.013) 43 (41 / 2) 51 (51 / 0) 7 (5 / 2) 21.09 (4.8) 18.97 (5.6) 16.13 (1.9)

approaches (classical MPC, Dynamic Window, and CADRL).
The experimental results demonstrate that our method out-
performs the baselines in static and dynamic environments.
Moreover, the light implementation of our design shows the
scalability of our method up to six agents and allowed us to run
all algorithms on-board. Finally, we showed the applicability
of our design to more complex robots by testing the design
in simulation using the model of an autonomous car. As
future work, we intend to expand our approach for crowded
scenarios, by accounting for the interaction effects between
the robot and the other agents.
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