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Abstract— This paper presents our research plat-
form SafeVRU for the interaction of self-driving vehicles with
Vulnerable Road Users (VRUs, i.e., pedestrians and cyclists).
The paper details the design (implemented with a modular
structure within ROS) of the full stack of vehicle localization,
environment perception, motion planning, and control, with
emphasis on the environment perception and planning modules.
The environment perception detects the VRUs using a stereo
camera and predicts their paths with Dynamic Bayesian Net-
works (DBNs), which can account for switching dynamics. The
motion planner is based on model predictive contouring control
(MPCC) and takes into account vehicle dynamics, control
objectives (e.g., desired speed), and perceived environment (i.e.,
the predicted VRU paths with behavioral uncertainties) over
a certain time horizon. We present simulation and real-world
results to illustrate the ability of our vehicle to plan and execute
collision-free trajectories in the presence of VRUs.

I. INTRODUCTION

Every year between 20 and 50 million people are involved
in road accidents, mostly caused by human errors [1]. Ac-
cording to [1], approximately 1.3 million people lost their life
in these accidents. Half of the victims are vulnerable road
users (VRUs), such as pedestrians and cyclists. Self-driving
vehicles can help reduce these fatalities [2].

Active safety features, such as autonomous emergency
braking (AEB), are increasingly found on-board vehicles on
the market to improve VRUs’ safety (see [3] for a recent
overview). In addition, some vehicles already automate steer-
ing functionality (e.g., [4], [5]), but still require the driver to
initiate the maneuver.

Major challenges must be addressed to ensure safety
and performance while driving in complex urban environ-
ments [6], where VRUs are present. The self-driving vehicle
should be aware of the presence of the VRUs and be able
to infer their intentions to plan its path accordingly to
avoid collisions. In this respect, motion planning methods
are required to provide safe (collision-free) and system-
compliant performance in complex environments with static
and moving obstacles (refer to [7], [8] for an overview).

In real-world applications, the information on the pose
(i.e., position and orientation) of other traffic participants
comes from a perception module. The perception module
should provide to the planner information not only concern-
ing the current position of the other road users, but also
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Fig. 1: The SafeVRU platform for interaction with VRUs
on-board our vehicle demonstrator.

their predicted paths (e.g., [9]–[11]). The planner should then
account for possible inaccuracy from the perception module
to improve the safety of the VRUs.

This paper presents our research platform SafeVRU (Safe
interaction with vulnerable road users), that is, a self-driving
vehicle (the converted Toyota Prius depicted in Figure 1)
able to plan collision-free trajectories in the presence of
VRUs. Our platform relies on the interactions between
the perception and planning modules, as detailed below.
SafeVRU relies on a perception module able to detect and es-
timate the paths of the VRUs over a prediction horizon, using
a Dynamic Bayesian Network (DBN). Then, SafeVRU ex-
ploits these paths in the planning module. Our planner
relies on model predictive contouring control (MPCC) [12],
[13]. MPCC formulates the planning problem as a multi-
objective constrained nonconvex optimization problem. Our
MPCC plans a collision-free path for vehicle over a prede-
fined time window. In this respect, our planner incorporates
time-varying collision-avoidance constraints based on the
predicted paths of the VRUs (provided by the perception
module). For additional safety (e.g., to account for possible
delays in the sensors and for comfort of the VRUs), the
planner adds repulsive fields around the predicted paths of
the VRUs. We tested the following scenarios:

S1: A cyclist riding along the direction of motion of
the vehicle while approaching an intersection (simulation).
The desired speed of the car in this scenario is 6 m/s and
the road boundaries are symmetric.

S2: Two pedestrians crossing the road in front of the
vehicle (simulation). The desired speed of the car in this
scenario is 4 m/s and the road boundaries are asymmetric.



S3: One pedestrian standing on the vehicle path (exper-
iment with the real vehicle). The desired speed of the car is
3 m/s and the road boundaries are asymmetric to fit the size
of the test track.

II. RELATED WORK

Recently, increasing attention has been dedicated to VRUs
safety (e.g., [3], [9]–[11], [14], [15]). In [9], a joint team
from Daimler and Karlsruhe Institute of Technology drove an
autonomous car on the Bertha Benz Memorial Route, where
they had to deal with VRUs. Their planner is divided into a
behavior generation and a trajectory planning. The behavior
generation decides how to interact with static and dynamic
obstacles using a state machine. The trajectory planner
computes the desired path (without taking into account the
dynamics of the vehicle) and sends it to a path-follower
low-level controller. When planning the trajectory decisions
concerning the obstacles have already been made.

Commercial AEB systems are able to avoid collisions
with detected VRUs as long as there is a sufficiently large
distance between the vehicle and the VRU. In [3], the
authors presented a pedestrian AEB analytical model to
calculate the certainty of finding a detected pedestrian in the
collision zone, by analysing the pedestrian lateral behavior.
Their model can help verify existing AEB systems and
design new AEB systems.

If the distance to perform an emergency brake is too small,
evasive steering maneuvers are required. Research on evasive
steering maneuvers for active pedestrian safety is extremely
active. In [10], the authors provide a driver-assistant design
to decide whether to brake or evade the crossing pedestrian
based on the information provided by the perception mod-
ule. A situation analysis module automatically evaluate the
criticality of the current driving scenario. Then, a decision
module decides whether to warn the driver or to trigger the
appropriate maneuvers for collision avoidance and mitigation
using dedicated controllers. In [11], the authors provide
an overview of evasive steering techniques discussing the
potential of evasive steering vs. braking. In addition, they
also detail the design of the Daimler automatic evasion
driver-assistance system for pedestrian protection. Similar
to [10], their system also relies on a situation analysis module
and a decision module that can take over control of the
car to trigger an emergency maneuver. In [14], the authors
propose an autonomous lane-keeping evasive maneuver that
relies on the road infrastructure (cameras placed at specific
hazardous locations). Their method can be used to take over
control of the car to avoid collisions with a pedestrian when
braking is no longer possible. In [15], the authors present
a driver assistance system to help the driver initiate an
evasive maneuver with pedestrians. The system is able to
take decisions by taking into account upcoming traffic.

Our research platform SafeVRU also allows to avoid
collisions with VRUs, but in fully automated mode. Our
self-driving vehicle is able to adapt its trajectory based on the
predicted paths of the VRUs derived from a DBN modeling
approach that captures switching dynamics. The vehicles

decides whether to brake or perform an evasive steering
maneuver when a VRU is on the path of the car. Hence our
system does not need a decision module that waits until the
very last moment, as the driver might take control of the
vehicle in an emergency after all. Furthermore, SafeVRU is
able to handle situations with multiple VRUs (e.g.,
Scenario S2). Safety of the VRUs and smooth driving are
achieved in our MPCC framework by solving a nonconvex
multi-objective optimization problem. MPCC requires to
solve this optimization problem online in real-time. Hence,
given that the main modules of SafeVRU are implemented in
ROS (Robot Operating System [16]), we integrated ACADO
(Automatic Control and Dynamic Optimization Toolkit [17])
in our ROS framework to solve the MPCC problem online
in real-time. In addition, we designed a dedicated UDP node
to manage the communication from the “ROS PC” (where
the perception module and the MPCC module run) to the
low-level interface on dSpace Autobox (see Section III-E).

III. SYSTEM ARCHITECTURE

SafeVRU relies on the following modules: (i) a route plan-
ner, (ii) a localization module, (iii) a perception module, (iv)
a local motion planner, and (v) a real-time PC. SafeVRU uses
these modules to drive in the presence of VRUs. Figure 2
summarizes the overall structure of SafeVRU.

In the reminder of the section, we provide more details on
the main components of our system architecture.

A. Route Planner

The route planner provides the global path ppath(φ) ∈
R2 to the local motion planner. Our current route planner
consists in a set of waypoints selected by the user that
connects the current position of the vehicle to the desired
destination. These waypoints are then converted by the local
motion planner into splines that the vehicle can follow.
The route planner provides the desired velocity the vehicle
should follow along the path (e.g., according to the rules
of the road). The global path can contain static and moving
obstacles. The local motion planner has the task of planning
collision-free trajectories as detailed in Section III-D.

B. Localization

The localization module serves as input to the perception
and to the motion planning modules. The perception module
needs to correct for the motions of the vehicle to enable
tracker-based intent recognition with respect to a world fixed
coordinate system. The motion planning module requires the
current pose and speed of the vehicle in order to plan the
acceleration and steering angle commands.

A nonlinear state estimation through sensor fusion con-
sisting of an unscented Kalman filter is used to estimate the
vehicle state, described by the L2-dimensional state vector.
The state vector consists of pose, velocity, and angular
velocity. This filter is implemented using the ROS robot
localization package [18]. For simplicity, the localization
module works in 2D, projecting all off-plane values to the
ground plane. The following odometry sources serve as
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Fig. 2: Overview of our architecture.

input to the ROS localization module: Inertial Measurement
Unit (IMU) and stereo odometry. The IMU is part of the
Global Navigation Satellite System/Inertial Navigation Sys-
tem (GNSS/INS) Combination Advanced Navigation Spatial
Dual and provides to our module only the orientation and
angular velocity data. The GNSS/INS device is configured
to measure the car heading using the velocity of the vehicle.
Although a GNSS/INS system is used to calculate the
heading of the vehicle, the position of the vehicle is only
computed in a locally accurate coordinate system. The stereo
odometry (pose) is calculated using Libviso2 [19]. The stereo
camera setup mounted on our vehicle consists of two ueye
camera’s (model: UI-3060CP-C-HQ R2).

C. Perception Module

The perception module provides to the local motion plan-
ner a probabilistic prediction of the future location of the
VRUs in the world-fixed coordinate frame (according to the
localization module). Our VRU prediction module relies on
the DBN described in [20].

a) Prediction: At time t, the goal is to create a dis-
tribution over the VRU position yt+n for all n ∈ [1 . . .N]
time steps into the future. This is done with a DBN.
Loosely speaking, a DBN is a Switching Linear Dynamical
System (SLDS) consisting of two Linear Dynamical Systems
(LDSs). The probability of switching between the two LDSs
is governed by additional discrete context variables.

The linear switching models are defined as follows [20]:

xt = A(Mt)xt−1 +Bεt εt ∼ N (0,Q) (1a)
yt = Cxt + ηt ηt ∼ N (0,R), (1b)

where, xt is the state of the model at time t, and A(Mt)

indicates that at any time step the state propagation is done
with the state matrix A of LDS model M . The probability
model Mt is the current model is governed by four binary
latent variables, as Figure 3 depicts. These latent variables
are: ZSTAT

t and and ZACT
t /ZACTED

t . In particular, ZSTAT
t indi-

cates the spatial context (e.g., is a cyclist at an intersection?),
and ZACT

t /ZACTED
t indicates whether the VRU is acting/has

acted, respectively (e.g., is a cyclist putting out an arm/has
a cyclist put out an arm, indicating the desire to turn the
upcoming intersection?).
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Fig. 3: The DBN with context cues shown for two consecu-
tive time steps, adapted from [20]. The discrete, continuous
and observed nodes are rectangular, circular and shaded,
respectively. The binary context nodes represent the relation
to the static environment ZSTAT

t , and object behavior (i.e. how
VRU acts, ZACT

t , or has acted, ZACTED
t ).

The latent variables ZSTAT
t and ZACT

t can be observed
through ESTAT

t and EACT
t respectively. The relationship be-

tween the latent variables and the observations is modeled
by a predefined probability distribution.

The resulting distribution over a future position yt+n is
a Mixture of k Gaussians (MoG) γ ∈ IΓ ∶= {1, ..., nMoG}
(nMoG is the total number of Gaussians) consisting of a
mean position xk and a covariance matrix Σ

(γ)
k , one for each

model, and can be computed by integrating over all latent
variables, as detailed in [20].
Remark 1. For Scenario S2 and the experiments (Section IV),
the perception module uses a single LDS, which has a larger
uncertainty region (leading to more conservative, but robust
predictions), for safety reasons.

b) Detection: A Single Shot Detector (SSD) [21]
trained on our Eurocities Persons dataset [22] detects the
VRU in front of the vehicle. Using the stereo-camera setup
and the absolute location of the ego vehicle (Section III-
B), the location of the VRU is transformed to a temporally
consistent reference frame. Consider for example the cyclist



in Scenario S1. In this reference frame, the position of
the intersection is known, as well as his distance to the
intersection. In addition, the probability of the left arm being
raised is detected through a pipeline built on top of the SSD.
A crop around the bounding box that is found by the SSD is
fed to a ROS implementation of OpenPose [23] to retrieve the
2D skeleton of the cyclist. Finally, a Support Vector Machine
computes the probability the cyclist has a raised arm, based
on the keypoints from the 2D skeleton.

D. Local Motion Planner
The local motion planner exploits the information pro-

vided by the route planner, localization module, and per-
ception module. Our local motion planner has two tasks:
(i) compute a collision-free trajectory for the vehicle, (ii)
directly control the car, by sending acceleration and steering
commands to the vehicle through the real-time PC. To
achieve these objectives we rely on a MPCC formulation
for the following reasons. First, MPCC allows one to plan
safe trajectories and compute control commands for the
vehicle, that is, MPCC incorporates in one module a local
motion planner and a path-following controller. Second,
MPCC allows us to take into account the predicted paths
of the VRUs provided by the perception module. Our local
motion planner builds on the approach of [13] with some
modifications as detailed below.

At time t, our planner solves the following model predic-
tive contouring control problem:

min
x,u,φ

N

∑
k=0

J(x(t+k),u(t+k),φ(t+k)) (2a)

s. t. :x(t + k + 1) = f(x(t + k),u(t + k)), (2b)
φ(t + k + 1)=φ(t + k)+v(t + k)∆tk (2c)

x(t) = xinit, (2d)
G(x(t + k),u(t + k)) ≤ g, (2e)

c
h(γ)
j (t + k) > 1, j ∈ V, h ∈ Idiscs, γ ∈ IΓ, (2f)

where constraints (2b)-(2f) are for k = 1, . . . ,N .
The planner takes into account the model of the vehi-

cle (2b), which is a discretized (at 25 Hz) kinematic bicycle
model [24]. The kinematic bicycle model is consistent for the
maneuvers we consider at this stage (i.e., maneuvers with a
low lateral acceleration) [25]. The problem above is solved
in a receding horizon fashion. At time t, the planner acquires
the state vector x ∶= [x, y, θ, v]T (current pose and speed) of
the car from the localization module and the approximated
path parameter φ (Eq. (2c)) according to [13]. Then, the
planner solves the optimization problem above to obtain a
sequence of commands [u]k=t+Nk=t ∶= {u(t), ...,u(t + N)}.
Then, the planner sends the first control command u(t) ∶=
[a, δ]T (i.e., acceleration a and front steering δ) through
the UDP node to the real-time PC (as Figure 2 shows) and
discards the other elements of the sequence.

The cost J defines the objectives of the planner1:

J ∶= Jv + Ja + Jδ + Je + Jrep. (3)

1We omit the time dependency when it is clear from the context.

Jv ∶= ∥vref − v∥2
Qv

is a quadratic penalty (with weight Qv)
on the deviation from the desired speed v. Ja ∶= ∥a∥2

Qa
and

Jδ ∶= ∥δ∥2
Qδ

impose a quadratic penalty (with weights Qa and
Qδ , respectively) on acceleration and steering commands,
respectively. Je ∶= eTQee, where e ∈ R2 is the error with
respect to the path provided by the route planner module
ppath(φ) ∈ R2 in the path’s tangential and normal direc-
tions (see [13] for details). Finally, Jrep is a repulsive penalty
function. Its definition is related to the collision avoidance
constraints and the road boundaries as detailed below.

Following [13] our vehicle is represented in the MPCC
problem as ndiscs discs of radius r centered in ph (where we
used p to indicate the position on the (x, y) plane in the body
frame, h ∈ Idiscs ∶= {1,2, . . . , ndiscs}, and ndisc is the number
of discs used to describe the vehicle). From the perspective of
vehicle, VRU j (j ∈ V ∶= {1, . . . , nVRUs}, nVRUs is the number
of VRUs seen by the car) is represented as an ellipse centered
in pj with orientation Rj and a (longitudinal direction)
and b (lateral direction) as semi-major and semi-minor axis,
respectively. For our design, the position of the VRU at
prediction step k is provided by the perception module as a
mean position. Then, recall that for each Gaussian γ ∈ IΓ, the
perception module provides also Σ(γ) (capturing perception
inaccuracy and behavioral variance) that is used to derive a,
b, and Rj . Let Σ(γ) be defined as follows:

Σ(γ) ∶= [ σ2
x ρσxσy

ρσxσy σ2
y

] (4)

Then, by using the singular value decomposition (SVD) of
Σ(γ) we can obtain the values of a, b, and the orientation of
the obstacle, as follows:

R
(γ)
j [a

(γ)2 0

0 b(γ)
2]R

(γ)T

j = SVD (Σ(γ)) , (5)

where R
(γ)
j , a(γ), b(γ) represent the values of Rj , a, and

b, respectively, according to the Gaussian γ. Finally, the
collision avoidance constraints at time t for h ∈ Idiscs, can
be approximated as follows2:

(Rj(ph−pj))
T[

1
(a+r)2 0

0 1
(b+r)2

]Rj(ph−pj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c
h(γ)
j

> 1, (6)

Loosely speaking, along the prediction horizon, the collision
avoidance constraints above impose that each circle repre-
senting the vehicle and the ellipse representing VRU j do not
intersect (if they intersect it means that a collision occurs).
We repeat the argument above for each Gaussian provided
by the perception module (for one obstacle we have as many
collision avoidance constraints as the number of Gaussians).

Constraints (6) require pj and ηj , that is, the pose (i.e.,
position and orientation) of VRU j, over the prediction
horizon of the planner N . The perception module provides
this information with some uncertainty. This uncertainty
grows with time due to the behavioral variance of the VRU

2We omit the dependency on γ to simplify the notation.



(see for example Figure 5). Hence, when choosing N for the
planner, we take into account (i) the quality of the predictions
of the VRUs’ intentions provided by the perception module
(if the prediction horizon is too long the uncertainties in the
predicted position of the VRU will be too large), (ii) safety
margins to react to the obstacles (if the prediction horizon
is too short the vehicle does not have enough time to react),
(iii) real-time performance. If the MPCC plans too far in the
future, it will have to deal with larger uncertainties on the
predicted position of the VRUs (leading to more conservative
trajectories), but if the horizon is too short the vehicle might
not have enough time to react to the presence of the VRU.
In addition, increasing the length of the prediction horizon
leads to a larger number of decision variables and constraints
that might compromise the real-time performance. Real-time
performance is required given that the planner does not only
provide a feasible trajectory for the car, but also the direct
commands to the actuators (acceleration and steering angle).
For our experiment, we selected N = 3 s, which offers
a good compromise between the quality of the prediction
provided by the perception, the safety margins to react to
nearby obstacles, and real-time performance.

Our planner also takes into account the road boundaries,
which are defined with respect to the global path as follows:

rb ∶= [− sin θ̄ (φ) cos θ̄ (φ)] (p − ppath) ∈ [rrb , rlb] , (7)

where θ̄ (φ), rrb , and rlb represent the heading of the path, the
allowed offset to the right and to the left of the global path,
respectively. Constraints (7) appear in the MPCC formulation
as (2e), which includes convex constraints on states and
actuators (such as actuator limitations).

Using the definition of the collision avoidance con-
straints (2f) and of the road boundaries (7), we can define
the cost associated with the repulsive fields as follows:

Jrep ∶= ∑
j∈V
∑

h∈Idiscs

Qc.a.

∥1 − ch(γ)j ∥2
+Qr.b. (erb−r

r
b +e−rb+r

l
b) , (8)

where Qc.a. and Qr.b. are tuning parameters. The repulsive
cost is an additional safety measure (we already impose
collision avoidance constraints and road boundary constraints
in (2)). Loosely speaking, the repulsive cost is such that
the closer the vehicle gets to the VRU j (according to the
information provided by the perception module) or to the
road boundaries, the higher is the cost. Hence, the planner
has the incentive to keep a safe distance from the VRUs and
to stay within the road boundaries.

The planner requires a solver to find a solution for (2) in
real time. We integrated ACADO [17] in our ROS frame-
work. ACADO uses a direct multiple shooting method to
solve (2), which is nonconvex and nonlinear. For N = 3 s,
the optimization problem has 200 decision variables (control
and state variables) and 250 constraints (road boundaries,
collision avoidance, control, and velocity constraints).

E. Low-level Control System

Our platform is equipped with a MOVE Box, a device de-
veloped by TNO (the Netherlands Organisation for Applied

Scientific Research). The MOVE Box allows us to remove
the driver from the loop. It enables the longitudinal control by
exploiting the existing adaptive cruise control and the lateral
control by exploiting the electric power steering system.

A dSpace AutoBox bridges the communication between
the ROS PC (Ethernet-UDP node) and the MOVE Box
(CAN). dSpace forwards the control commands provided by
the MPCC to the MOVE Box. In addition, dSpace imple-
ments low-level safety measures (e.g., monitoring maximum
acceleration and steering angle) and handle communication
loss (e.g., sending a back-up command that combines neutral
steering and slight braking is sent to the MOVE Box in case
of loss of communication).

IV. EXPERIMENTS

We tested our proposed design in different scenarios with
extensive simulations and experiments. Our simulation setup
uses a 9 DoF non-linear car model (three rigid bodies
representing the sprung body, front, and rear axles) devel-
oped in MATLAB/SimMechanics [26]. The tire dynamics
are modelled using Delft-Tyre 6.2 with a Magic Formula
steady-state slip model describing nonlinear slip forces and
moments [27]. The car model runs on a Windows PC with
an Intel Xeon CPU running at 3.60 GHz. The car model
is simulated at 100 Hz, while the localisation, perception,
and control on the ROS machine (running Ubuntu 18.04.1
LTS) send messages at 25 Hz (as in the setup we have on
the real vehicle). Our modules in our experimental setup are
implemented on a PC (mounted on board of the car) running
Ubuntu 18.04.1 LTS with an Intel(R) Core(TM) i7-6900K
CPU at 3.20GHz. The PC has 64GB memory. In addition, the
PC contains two Titan X (Pascal) GPUs for stereo matching
and VRU detection. The CUDA version used is 10.0.

For safety reasons, we tested the interactions of the vehicle
with a cyclist and two pedestrians in simulation. Further-
more, we tested the interactions between the real vehicle
and a pedestrian dummy during our experiments. Our design
was able to adapt the vehicle behavior to different initial
configurations (e.g., different reference velocities for the
vehicle and different behavior of the pedestrians and cyclist).
In all the cases studied, the MPCC provided suitable paths
for the vehicle to follow to ensure the safety of the VRUs by
taking into account their predicted paths (with behavioral un-
certainties) provided by the perception module. If sufficient
space was available, the vehicle passed the VRUs, planning
agile maneuvers when needed (e.g., Scenario S2). If passing
was unsafe the vehicle reduced its speed or stopped (e.g.,
Scenario S1). We detail the scenarios described in Section I.

S1: Figure 4 shows the simulation results obtained from
the interaction with a cyclist and shows the benefits of using
the estimated paths of the cyclist in the planner. The cyclist
decides to turn at an upcoming intersection. Thanks to the
perception module that predicts the path (Figure 4a), the
car starts to brake (notice that the length of the blue path
shrinks) before the cyclist starts to turn (Figure 4b) and
adapts its path to prevent a possible collision (Figure 4c),
while remaining within the road boundaries. Without the



(a) The vehicle plans to overtake
the cyclist at the left.

(b) The vehicle brakes based on
the cyclist’s estimated path.

(c) The vehicle plans based on
cyclist’s estimated path.

(d) The vehicle returns to its path.

Fig. 4: S1: turning cyclist. The vehicle adapts its predicted path based on the two estimated paths of the cyclist. The blue
lines are the road boundaries, the red line is the global path, the blue path (circles) is the predicted trajectory of the car,
the green and red paths (ellipses) represent the predicted trajectory of the cyclist provided by the perception module (as a
mixture of two Gaussians). The red path is associated with the prediction that the cyclist will go straight at the intersection,
while the green path is associated with the prediction that the cyclist will turn at the intersection.

2

1

(a) The vehicle plans to pass at
left the first pedestrian.

(b) The vehicle plans to pass at
right the first pedestrian.

(c) The vehicle encounters the
second pedestrian and plans a
path to avoid both pedestrians.

(d) The vehicle returns to its path
and the pedestrians safely cross
the road.

Fig. 5: S2: two pedestrians. The vehicle adapts its predicted path based on the estimated path (red ellipses) of each pedestrian.
Notice that the size of each ellipses grows over the horizon due to the uncertainties on the pedestrian positions over time.

(a) Start of the overtaking. (b) During the overtaking. (c) End of the overtaking.

Fig. 6: S3: experimental results with a pedestrian dummy. Trajectory of the vehicle during one of our experiments with our
research platform. The blue lines depict the road boundaries, the green line is the global path, the blue circles depict the
trajectory planned by the local planner, the red ellipses represent the dummy’s predicted position.

Fig. 7: S3: experimental results with a pedestrian dummy. Acceleration, steering wheel angle, and longitudinal velocity of
the vehicle.

prediction the cyclist will turn represented in green (e.g.,
with just a constant velocity model) the car would not have
enough time to react to the turning cyclist. Notice that
during the maneuver the planner commands the car to brake
(reducing its speed) for the safety of the cyclist (second
plot from the left in Figure 4b). This is possible thanks

to the MPCC formulation that, compared to classical path-
following approaches, allows the controller more flexibility
to determine the state trajectories.

S2: Figures 5 shows simulation results with two pedes-
trians crossing in front of the car. This scenario shows how
our vehicle handles multiple VRUs. The vehicle starts to



pass at left the first pedestrian (Figure 5a). Then, given that
the first pedestrian continues to cross the street (from top to
bottom) the vehicle plans to pass at right (Figure 5b). During
the maneuver, the vehicle encounters the second pedestrian
(crossing the road from bottom to top), and plans a path to
avoid both pedestrians (Figure 5c). The two pedestrians cross
the road safely and the car returns to its path.

S3: Figures 6 and 7 show the experimental results. As
Figure 6 depicts, the vehicle is able to overtake the pedestrian
dummy by taking into account its predicted position. At the
same time, the car is also able to increase its speed to reach
its desired speed (3 m/s), as Figure 7 shows. Figure 7 shows
that the measured vehicle motion, closely follows the desired
motion, with some noise in the acceleration and a small delay
in steering (approx 0.2 s) caused by physical steering-wheel
limitations. Nevertheless, the vehicle is able to safely pass
the pedestrian dummy.

V. CONCLUSIONS

We presented our research platform SafeVRU for the
interaction of self-driving vehicles with VRUs. Our self-
driving vehicle relies on a local motion planner that in-
corporates the predicted VRUs paths provided by stereo
vision-based perception module to safely navigate in the
presence of VRUs. The MPCC creates suitable trajectories to
safely interacts with multiple VRUs taking into account the
predicted paths (with behavioral uncertainties) provided by
the perception module. The platform is implemented in ROS
and runs in real time. We showed promising results with our
platform both in simulation and in real-world experiments.
The modular structure of our planner allows one to adjust
the driving style of the vehicle and the comfort levels of
the VRUs. Our design is robust to different scenarios and
allows the vehicle to interact with different VRUs (cyclists
and pedestrians) at different speeds.

SafeVRU is an on-going research effort. We aim to in-
crease the number and complexity of scenarios addressed.
This will lead to several design and implementation chal-
lenges to guarantee, for example, real-time performance.
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