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ABSTRACT1
Previous studies examining ride-sharing potential assumed that rides can be shared as long as the2
incurred delay does not exceed a certain threshold. Conversely, we formulate willingness to share3
as a compensatory cost function at the individual passenger level. The latter considers trade-offs4
between delays caused by detours, travel discomfort related to sharing a vehicle and a fare discount5
associated with a shared ride. Next to finding how these behavioral preferences and the offered6
discount structure affect the efficiency and level of service of ride-sharing services, the effect of7
directionality in demand is considered. A graph-based approach is applied to perform an efficient8
assignment of vehicles to requests. We test the model on an experiment representing an urban9
context. Our findings suggest that service performance is strongly dependent on users’ willingness10
to share and somewhat less strongly on users’ tolerance to delays. Implementation of a ride-sharing11
service is most successful when directionality in demand is low, while ride-specific discounts can12
be effective in maximizing societal benefits.13

14
Keywords: Ride-sharing, Willingness to share, Delay tolerance, Demand distribution, Pricing15
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INTRODUCTION1
Developments in communication and information technologies in recent years have led to2

the rise of real-time and on-demand ride-sharing platforms like UberPool and BlaBlaCar. In May3
2019, in New York alone nearly 125,000 trips were made using a ride-sharing service (1). Users of4
such platforms allow other travellers to join their ride, even accepting small detours, which offers5
opportunities for a more efficient utilization of road space and consequently reduced congestion6
levels, improved air quality and better traffic safety (2, 3).7

Whether ride-sharing in practice can live up to these expectations is uncertain. Ride-sharing8
might for example substitute public transit rather than individual rides, leading to more rather than9
less vehicle kilometers on the roads. Moreover, the operation of a ride-sharing service may require10
excessive subsidization to cover for the discounted ride fares, and therefore not be viable. There11
are several other issues that can prevent a wide-scale adoption of ride-sharing services. Next to12
delays following from detouring to pick up and drop off other passengers, social issues related13
to sharing are an important deterrent for potential users. This includes a lack of privacy (4, 5),14
a feeling of dependence and a fear of having negative social interactions with other users (6, 7).15
Social discomfort might help explain why in January 2019 only 25% of Uber’s rides in New York16
were made with its ride-sharing service UberPool (1). Also, as ride-sharing efficiency is dependent17
on the compatibility of trip requests, a ride-sharing trip is not necessarily shared in practice. In fact,18
a study on the impacts of ride-hailing in Toronto found that in only 18% of all ride-sharing trips, a19
rider is actually matched to another rider (8).20

Previous quantitative studies on societal benefits of ride-sharing nevertheless showed promis-21
ing results. A study by Ma et al. (9) for example stated that if the current fleet of taxis in New York22
allows for shared rides, while users accept a maximum extra travel time of 5 minutes for their ride,23
25% more users can be served and 13% of the total vehicle distance can be cut. Another study24
analyzed ride-sharing based on graph structures (’shareability graphs’) and concluded that, given25
the same setting, 32% of the total current vehicle distance of taxis can become unnecessary (10).26
When ride-sharing is executed with high-capacity vehicles of up to ten seats, less than one sixth of27
the size of the current taxi fleet can serve 98% of the original requests with a maximum delay of28
3.5 minutes per passenger (11). While the previously mentioned studies focused on ride-sharing29
in New York, Tachet et al. (12) found that ride-sharing potential also exists for cities with a lower30
density than New York.31

A common shortcoming of previous ride-sharing studies is that they account for only one32
of three elements in the complex trade-off that users typically make between a delay, discomfort33
and a discounted fare when considering a shared ride. Each of these studies simplify ride-sharing34
choice by considering only a maximum allowed delay, meaning that they implicitly assume that35
users are principally willing to ride-share even if it gives them no benefit and a (relatively small)36
delay. Conversely, in this study we explicitly consider a trade-off of travel attributes by accounting37
for discomfort stemming from sharing and discounted ride fares. The question to be answered is38
how the operational efficiency of a ride-sharing service and the level of service that it offers to its39
users depends on the attitudes of potential users towards delays and the presence of co-riders. At40
the same time, the incorporation of the cost-benefit trade-off at the individual passenger level allows41
us to derive first implications for the design of an effective discount structure to boost ride-sharing42
adoption and consequently reduce the total vehicle distance on the road.43

A final drawback of previous work in this field is that it consists mainly of case-specific44
analyses. It is largely unknown how the success of a ride-sharing service depends on the environment45
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in which it is implemented, or in other words, in which markets ride-sharing has most potential.1
This study will focus specifically on the distribution of demand to find how efficiency gains and2
level of service depend on the extent of directionality in demand.3

This paper is structured into four parts. Firstly, a detailed description is given of the4
methodology that was developed. This is followed by a motivation for the design of the numerical5
experiment. The results for the different scenarios in the expeiment are then presented, before stating6
the main conclusions that can be drawn in relation to the effect of users’ behavioral preferences,7
the spatial distribution of demand and the pricing mechanism on the performance of a ride-sharing8
service.9

METHODOLOGY10
In order to simulate the operations of a ride-sharing service and determine the total vehicle11

movement and service quality, several modelling approaches have been taken in previous research12
for assigning passenger requests to vehicles. For example, one of the earlier studies considered ride-13
sharing assignment as a Vehicle Routing Problem (VRP) with time windows (9). Each incoming14
request was thereby individually allocated to a vehicle using a greedy algorithm. A study by15
Santi et al. (10) introduced the concept of shareability graphs (SG) to capture the shareability16
of two requests in a graph structure so that assignment can be performed with traditional graph-17
solving optimization methods. A follow-up study elaborated on the graph-based approach by the18
introduction of two more graph structures to allow for grouping of requests and consequently19
high-capacity ride-sharing (11). A request-group-vehicle (RGV) graph represents memberships20
of request groups and with which vehicles each request group can be served. In this way, the21
assignment problem is represented as an Integer Linear Problem (ILP). Finally, agent-based models22
(ABM) have been used to study ride-sharing before, whereby users and vehicles are modelled as23
agents that interact (13, 14).24

Of the different approaches, the RGV-approach is found most suitable given the modeling25
requirements of this study. First and foremost, it allows to model ride-sharing with more than two26
passengers per vehicle. Moreover, the assignment can yield an optimal solution. By representing the27
assignment in a graph form, the problem’s computational complexity is minimized, which is useful28
given our interest in assessing different scenarios in this study. A final upside of the RGV-approach29
is that its explanatory power is strong with different graphs visualizing some of the main steps in30
the assignment procedure. As shown by Figure 1, requests are assigned to vehicles at fixed intervals,31
whereby each iteration consists of nine main steps.32

Group-vehicle feasibility33
Key to the approach is the way in which is determined whether a specific vehicle v in fleet V , with34
passengers Pv on-board, can serve a group of pending requests Z. First, the complete set of routes35
Kv is identified with which v can potentially satisfy Z. Each route Sv ∈ Kv, defined as a sequence of36
stops, is then checked for feasibility based on a vehicle and a user constraint. The vehicle constraint37
ensures that v cannot serve Z with route Sv if the vehicle capacity υ is exceeded between any of the38
stops in Sv, similar to the approach of Alonso-Mora et al. (11).39

The user constraint in this study is more complex and considers for each individual request40
r in Z or Pv, as has been explained in the introduction, a trade-off between ride-sharing benefits41
and costs. The ride-sharing benefit of r consists of the total fare discount and is thus dependent42
on the discount rate πr that is applied to the ride fare cr when a ride is shared. πr can thereby be43



de Ruijter, Cats, Alonso-Mora and Hoogendoorn 5

FIGURE 1 Overview of the methodology, including an example (in blue) with three requests
and two (empty) vehicles

fixed or be inverse with the level of service of the experienced ride. Disbenefits on the other hand1
follow from extra travel time and additional discomfort associated with sharing a vehicle. The total2
disbenefit of a ride thereby depends on how users perceive both attributes, in this study expressed as3
delay aversion βr and reluctance to share γr. These two parameters indicate what fare discount users4
require for an hour of delay and for sharing a vehicle with other riders (all other factors being the5



de Ruijter, Cats, Alonso-Mora and Hoogendoorn 6

same), respectively. A variable αr is added to indicate how much more negatively users experience1
the waiting time before pick-up compared to the in-vehicle delay. As in (11), the waiting time of a2
request wtr is calculated as the difference between the time of pick-up t pu

r and time of request tr
r .3

The total delay delr is the difference between the actual time of drop-off td
r and the earliest possible4

time of drop-off t∗r = tr
r + ttor,dr , given an immediate pick-up and a direct route with travel time5

ttor,dr between origin or and destination dr. The total net benefit of r is consequently specified as:6

br = πr · cr− (td
r − t∗r ) ·βr− (t pu

r − tr
r ) ·αr− γr (1)7

Route Sv is assumed to satisfy the user level of service constraint only if the net benefit br of8
each request in Z and Pv is positive. If there exists at least one feasible route Sv ∈ Kv to serve Z, Z9
and v form a feasible match.10

RGV-matching11
The set of available requests for assignment R comprises of rejected requests from the previous12
assignment (as long as they can still be served with a direct ride) and incoming requests since the13
last assignment. As mentioned earlier, the actual assignment involves the creation of a RGV-graph14
to find which group-vehicle combinations are feasible and how the benefit of different combinations15
compare. To prevent testing all group-vehicle combinations for feasibility, the process is divided16
into three successive matching steps, similar to the approach of Alonso-Mora et al. (11).17

The purpose of the first of these three steps (step 2 in Figure 1) is to find whether two18
requests in R can share a ride, given the most optimal scenario in which there is an empty vehicle at19
the location of one of those requests, based on the procedure described in the previous subsection.20
By checking the match of all request pairs in R, the set of potentially feasible request groups G can21
be significantly reduced. The next step (step 3 in Figure 1) checks whether a vehicle v ∈V can serve22
a single request r ∈ R given its current location and available seats. The result of both steps can be23
combined and stored in a RV-graph (step 4) with edges indicating that two requests, or a request24
and a vehicle, match. Each clique in the RV-graph represents a potentially feasible group-vehicle25
combination. Step 5 checks whether a feasible route Sv to satisfy a group-vehicle combination26
within user and capacity constraints actually exists. The RGV-graph consists of nodes representing27
the set of available requests R, the set of feasible request groups G and the set of vehicles V . Each28
edge between a request r ∈ R and a request group g ∈ G has a label arg indicating whether r is part29
of g (arg = 1) or not (arg = 0), and each edge between a request group g ∈ G and vehicle v ∈V has30
a label bgv indicating the sum of benefits of all requests in g and passengers in Pv for the optimal31
route S∗v . If a group-vehicle combination g− v is not feasible, bgv is assigned a very large penalty32
(so-called big M), to ensure that this combination is not chosen during the assignment.33

Assignment34
In this part of the procedure (step 7 in Figure 1), requests are assigned to vehicles based on the35
RGV-graph. The group-vehicle assignment is treated as an Integer Linear Problem (ILP) with36
binary decision variables xgv indicating whether a group-vehicle combination with total benefit bgv37
is chosen or not. The ILP is defined as follows:38
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max ∑
g∈G

∑
v∈V

(bgv +
√

M ·∑
r∈R

arg) · xgv (2)1

s.t. ∑
g∈G

xgv ≤ 1, ∀v ∈V (3)2

∑
g∈G

∑
v∈V

arg · xgv ≤ 1, ∀r ∈ R (4)3

xgv = [0,1], ∀g ∈ G,v ∈V (5)4

The objective function (Equation 2) aims at a maximum total benefit for accepted requests5
and passengers, but prioritizes the acceptance of a maximum number of requests by adding a very6
large reward for each request r in an assigned request group g. The sum of those rewards should,7
however, never be so large that it can overpass the big M penalty assigned to infeasible group-vehicle8
combinations in the objective function. Therefore, the reward per request group is set to

√
M. The9

total benefit of a group-vehicle combination g− v thus consists of the summed net benefit for all10
requests and passengers in this group plus a large reward

√
M for each request that is part of this11

group.12
The Integer Linear Problem contains three types of constraints guaranteeing respectively a13

maximum assignment of one request group g to each vehicle v (Equation 3), that each request r is14
not part of multiple assigned request groups in G (Equation 4), and that each decision variable is15
binary (Equation 5).16

Rebalancing17
Unassigned vehicles are assigned to move in the direction of unassigned requests to anticipate on18
new requests appearing in areas that currently have undersupply (step 8 in Figure 1). In this study,19
the rebalancing procedure of Alonso-Mora et al. (11) is used. Its objective is to minimize the total20
empty vehicle rebalancing distance while ensuring a maximum number of vehicles to be assigned21
to rebalance.22

After vehicles are assigned to pick-up requests, rebalance or remain idle, vehicle schedules23
are updated and the next assignment phase is prepared (step 9).24

KPIs25
The performance of a ride-sharing service is measured using several Key Performance Indicators26
(KPIs) capturing both its level of service (LoS) towards users and its operational efficiency for27
authorities and service providers. If ride-sharing users value the same aspects as public transit users28
(15–19), the most important indicators for service quality are reliability, comfort, travel time and29
fare level. Ride fares in this case are not considered as KPI, since they are directly dependent on πr30
and are thus model input. The main LoS KPIs in this study include the acceptance rate (i.e. the31
percentage of fulfilled requests out of the total demand, thereby an indicator for reliability), the32
delay as percentage of the direct travel time (indicating travel time), the average number of stops per33
passenger, and the share of passenger time with a specific number of co-riders on-board (indicating34
comfort).35

An authority on the other hand will be most interested in the share of the vehicle distance that36
can be reduced with ride-sharing. A suitable KPI to express distance efficiency is the gross effective37
vehicle transportation distance ratio, which is defined as the sum of the shortest OD-distance of38
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accepted requests (= ’effective vehicle distance’) divided by the total vehicle movement distance1
(20). The total vehicle movement distance (or vehicle mileage) consists of the transportation2
distance (the vehicle distance with at least one passenger on-board), the deadheading distance3
(the total empty vehicle distance to pick-up a new request) and the empty vehicle rebalancing4
distance. Also, a net effective vehicle transportation distance ratio is defined. This ratio accounts5
for the fact that the summed shortest distance of accepted requests, which represents the distance6
needed when sharing is not allowed, excludes deadheading. For a more fair comparison, the7
deadheading distance is therefore subtracted from the total vehicle movement in the net effective8
vehicle transportation distance ratio. For operators, the average vehicle occupancy while a vehicle9
is transporting passengers is an important efficiency KPI.10

Implementation11
The simulation model is implemented in Python, using the open-source library Numpy to enable12
efficient operations of large data structures in the model, such as creating and storing the edges13
of RGV-graphs when many requests and vehicles are considered. The Networkx package is used14
to compute the shortest path between a pair of locations in the road network, after which the15
corresponding travel time is stored in a look-up table. The optimization problems that are part of the16
group-vehicle assignment and rebalancing procedure are solved using the MOSEK Optimizer API.17

EXPERIMENTAL DESIGN18
An experiment is constructed to test the effect of users’ behavioral preferences, the dis-19

counting policy and the spatial distribution of demand on ride-sharing performance in an urban20
context.21

Set-up22
The assumed grid network consists of 121 nodes with a link distance of 500 meters, thereby leading23
to a maximum trip distance of 10 kilometers and a surface area of 25 km2, comparable to the area24
inside the Ring Road of Amsterdam or the Inner Ring of Berlin. The intermediate stop distance is25
relatively large, whereby we implicitly assume that vehicles cannot stop at all road intersections and26
users are willing to walk to a stop. The assumed speed on the roads is slightly higher than in an27
average European city (21): 36 km/h.28

The total demand for trips is set to 1,210 requests per hour, an average of 10 requests per29
hour per node. The way trips are distributed over the network is scenario-specific, but in all cases30
trips with a ride distance of 2 kilometers or shorter are excluded, as such rides are uncommon (22) as31
well as undesirable in the context of a ride-sharing service. A gravity model (23) is applied to create32
a list of origin-destination pairs. Each such request r gets assigned a request time tr

r by sampling33
from an exponential distribution based on the expected interval λ between two requests with a34
specific OD-combination, which follows, again, from the (scenario-specific) demand distribution.35

The fleet of the investigated ride-sharing service consists of 150 vehicles with capacity36
υ = 3, initially evenly distributed over the network. Ride fares are set based on the regulated37
maximum taxi fares for the city of Amsterdam in 2019: a base fee of e3 and a kilometer fee of e238
(24).39

For efficiency purposes, the total duration of the simulation is limited to two hours, with40
request groups being assigned to vehicles every minute (120 times in total). An additional warm-up41
period of 15 minutes applies to minimize the impact of each of the starting conditions.42
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Scenarios1
The effect of delay and waiting time aversion is tested by trying five different values for βr (with2
αr in this experiment set to half βr). Delay aversion might be best compared to the value of travel3
time reliability (VOR) in public transit. Since a study on travel time reliability for commuters in4
Barcelona (25) found a VOR of e34.4/h and a similar study for Australia (26) concluded a mean5
value of approximately e33/h, the base value for βr assumed in this study is e30/h. The effect of βr6
is tested by trying both values higher and lower than e30/h (as specified in scenarios 1-5 in Table 1).7
As little is known in literature about the reluctance to share a vehicle with co-riders (γr), a relatively8
large range of values is tested in the numerical experiment: from e1 to e5 (scenarios 1 and 6-9 in9
Table 1). In all of the other scenarios, a median value of γr = e3 is assumed.10

TABLE 1 Scenario design (αr = 0.5 ·βr)

# Demand βr (e/h) γr (e) πr (%) Acronym
1 Uniform 30 3 50 U_30_3_50
2 Uniform 18 3 50 U_18_3_50
3 Uniform 24 3 50 U_24_3_50
4 Uniform 36 3 50 U_36_3_50
5 Uniform 42 3 50 U_42_3_50
6 Uniform 30 1 50 U_30_1_50
7 Uniform 30 2 50 U_30_2_50
8 Uniform 30 4 50 U_30_4_50
9 Uniform 30 5 50 U_30_5_50
10 Uniform 30 5 50 + 7.5 ·npax U_30_5_D
11 Moderately directed 30 5 50 MD_30_5_50
12 Strongly directed 30 5 50 SD_30_5_50

Two scenarios (1 and 10 in Table 1) have been designed to test the effect of the pricing11
mechanism. The first of the two scenarios (or in fact all scenarios except 10) assumes a fixed 50%12
discount for all ride-sharing rides, independent of whether sharing actually occurred throughout13
the ride. In the alternative scenario, a similar discount of 50% is given to a user if he or she ends14
up being served privately (whereby the discount is basically a compensation for the risk of having15
to share), and an additional 7.5% discount is given for each co-rider npax in the vehicle during the16
busiest part of the ride.17

The effect of directionality in demand is tested using three different scenarios. In the base18
scenario (1 in Table 1) demand is perfectly uniform, with equal production and attraction in each of19
the nodes. The other two scenarios (11 and 12 in Table 1) represent an increasingly concentrated20
demand pattern, with more production in the outer nodes of the network and more attraction in the21
central nodes, intended to mimic a morning peak pattern.22

RESULTS23
This section shows the effect of the preferences of potential ride-sharing users, the applied24

discount structure and the demand distribution on the level of service and efficiency of a ride-sharing25
service. The comprehensive list of KPI values is presented in Tables 2 (level of service) and26
3 (efficiency). The three subsections that follow each go into detail on the effect of one of the27
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investigated variables.1

TABLE 2 Level of service KPI values for each scenario
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U_30_3_50 76% 126.8 92.1 34.7 30% 0.95 50% 32% 18%
U_18_3_50 88% 200.5 122.4 78.1 49% 1.56 31% 33% 36%
U_24_3_50 81% 158.5 103.6 55.0 37% 1.24 40% 35% 25%
U_36_3_50 70% 106.2 84.8 21.4 25% 0.79 58% 31% 11%
U_42_3_50 64% 93.2 77.1 16.0 21% 0.67 63% 29% 8%
U_30_1_50 99% 219.5 138.2 81.3 61% 1.83 25% 38% 37%
U_30_2_50 98% 169.6 114.0 55.6 45% 1.40 35% 37% 28%
U_30_4_50 46% 102.7 82.9 19.8 21% 0.66 64% 27% 9%
U_30_5_50 25% 88.0 74.7 13.2 15% 0.39 76% 21% 3%
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MD_30_3_50 68% 117.7 92.5 25.1 29% 0.79 56% 30% 14%
SD_30_3_50 63% 130.7 106.5 24.2 32% 0.80 53% 33% 14%
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U_30_3_50 6,488 5,588 900 156 1.15 1.34 0.173 1.38 70% 22% 8%
U_18_3_50 6,357 5,690 667 78 1.27 1.42 0.117 1.68 52% 28% 20%
U_24_3_50 6,456 5,657 799 133 1.21 1.38 0.166 1.52 61% 26% 13%
U_36_3_50 6,350 5,453 898 156 1.12 1.30 0.174 1.30 75% 20% 5%
U_42_3_50 6,142 5,218 925 187 1.09 1.28 0.202 1.24 79% 18% 3%
U_30_1_50 6,389 5,867 522 9 1.36 1.48 0.017 1.78 44% 34% 22%
U_30_2_50 6,853 6,133 720 56 1.26 1.41 0.077 1.59 56% 30% 15%
U_30_4_50 4,966 4,330 636 106 1.10 1.26 0.167 1.24 79% 17% 4%
U_30_5_50 3,321 2,958 364 37 1.05 1.18 0.102 1.14 87% 12% 1%
U_30_3_D 5,687 5,186 501 125 1.35 1.48 0.249 1.85 43% 29% 28%
MD_30_3_50 6,000 4,829 1,171 393 1.06 1.31 0.335 1.32 74% 20% 6%
SD_30_3_50 6,288 4,552 1,736 910 0.95 1.31 0.524 1.35 72% 22% 6%
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Effect of behavioral preferences1
The acceptance rate (Figure 2a) is found to increase when reluctance to share γr decreases, from2
25.4% when γr = e5 to nearly 100% when γr = e1. The increase is approximately linear until3
the great majority of requests is accepted. The average vehicle occupancy (Figure 2b) increases4
more than linearly when γr decreases, as well as passengers’ waiting time and in-vehicle delay5
(Figure 2c). It is found that rides are hardly shared (i.e. the average vehicle occupancy is 1.14)6
if users are very sensitive to sharing with other passengers, meaning that the average in-vehicle7
delay is close to zero. In such a scenario, the operational efficiency in terms of the number of8
effective passenger kilometers per vehicle kilometer is as low as 1.05. This ratio is found to increase9
approximately linearly with an increase in the willingness to share. It can be explained by the10
finding that the total effective vehicle distance (due to more requests served) increases more than11
the total vehicle movement distance when users are more flexible (Figure 2d), as a result of a more12
efficient assignment of vehicles to requests. Also, deadheading is found to be relatively uncommon13
when users’ sharing tolerance is high, as new requests can be picked-up by vehicles on their way to14
drop off other passengers. If γr = e1 for example, the average effective passenger distance per total15
vehicle kilometer in the system (including transportation and deadheading) rises to 1.36 kilometer.16

When considering the effect of delay aversion βr instead of reluctance to share γr, similar,17
albeit less pronounced results are found. The acceptance rate, for example, does not exceed 90% in18
any of the scenarios. Evidently, the level of service and operational efficiency are more sensitive to19
the tested values of the willingness to share, γr, than to those of the delay aversion, βr.20

FIGURE 2 Effect of reluctance to share γr on (a) acceptance rate, (b) vehicle occupancy and
number of intermediate stops, (c) average passenger delay, and (d) total vehicle movement,
total transportation distance and effective transportation distance

(a) (b)

(c) (d)
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Effect of discount mechanism1
As expected, when users receive an additional 7.5% discount per co-rider they share the busiest part2
of their ride with (U_30_3_D), the average vehicle occupancy increases quite dramatically (from3
1.38 to 1.85, as shown by Figure 3a), and a similar increase is found in the passenger time in a4
full vehicle (from 17,7% to 45.1% of the total passenger time). By utilizing the available vehicle5
capacity more efficiently, the acceptance rate (also Figure 3a) increases from 76.0% to 82.1%,6
although at the cost of a higher average delay (Figure 3b). A higher vehicle occupancy will burden7
passengers with larger detours and consequently an in-vehicle delay more than three times as high as8
when no additional discount is offered (25.1% vs 8.1% of the direct travel time). Also, the average9
waiting time of requests is marginally higher in the scenario with an occupancy-dependent discount,10
with pick-ups being complicated by the fact that many vehicles are driving around fully occupied.11

The (gross) effective vehicle transportation distance ratio increases from 1.15 (U_30_3_50)12
to 1.35 when an additional 7.5% discount is awarded per co-rider (U_30_3_D). In combination13
with a higher acceptance rate, relatively large distance savings (Figure 3c) can thus be achieved14
with an additional occupancy-dependent discount. The distance that a ride-sharing service can save15
originates not only from more efficient transportation of requests (the transportation distance drops16
from 5,588 to 4,829 kilometers) but also from a reduction of the deadheading distance to access17
new requests (from 900 to 501 kilometers), as requests are being picked-up by non-empty vehicles18
on their way to drop off other passengers.19

FIGURE 3 Effect of discount structure on (a) acceptance rate and average vehicle occupancy,
(b) average passenger delay, and (c) total vehicle movement distance and effective transporta-
tion distance; the difference indicating distance savings

(a) (b) (c)

Effect of demand distribution20
More directionality in demand leads to more requests being rejected by the ride-sharing service21
(37.1% when demand is strongly directed versus 24.0% when demand is perfectly uniform, as22
shown by Figure 4a). If demand is perfectly uniform, the average vehicle occupancy of vehicles in23
revenue mode (also Figure 4a) is 1.38 and the average passenger delay (Figure 4b) is 29.5% of the24
direct travel time. The drop in the number of accepted requests when there is a moderate level of25
direction in demand leads to a drop in the vehicle occupancy (1.32) and average delay (29.1% of26
direct travel time). If the level of direction increases further however, the average delay starts to27
increase again, to 31.9% of the direct travel time in a scenario where demand is strongly directed.28
With a larger spatial inequality in pick-ups and drop-offs, average waiting times are relatively29
short in the center, where attraction exceeds production (Figure 4c), compared to the nodes in the30
periphery of the network. Since only the minority of requests originates here, the average waiting31
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time is mainly determined by requests originating outside the center, where production exceeds1
attraction. In these nodes, the average waiting time is nearly twice as high (27.1% versus 14.1%).2

Deadheading to solve inequality in supply and demand is responsible for 27.6% of all3
vehicle kilometers in a scenario in which demand is strongly directed, compared to only 13.9% of4
the mileage when demand is uniform. The effective passenger kilometers per ride-sharing vehicle5
kilometer in respective scenarios are 0.95 and 1.15, meaning that when directionality in demand is6
high, the total vehicle distance can be longer than the effective transportation distance (Figure 4d).7

FIGURE 4 Effect of directionality in demand on (a) acceptance rate and average vehicle
occupancy, (b) average passenger delay, (c) location-based average waiting time, and (d) total
vehicle movement distance and effective transportation distance; the difference indicating
distance savings

(a) (b)

(c) (d)

Computational complexity8
With run times of approximately five hours using a single-core 2.30GHz processor, the scenarios9
with lowest delay aversion βr and lowest reluctance to share γr are, by far, most computationally10
complex. This concerns scenarios where requests can be satisfied with large detours, meaning11
that large request groups are potentially feasible, hence increasing the solution space. It requires12
significant computational time to test those as the set of possible routes to satisfy such groups is13
significantly (i.e. more than exponentially) larger than for small request groups. An occupancy-14
dependent additional discount (U_30_3_D) is also favorable for the feasibility of large request15
groups, and consequently the computational complexity of this scenario is also relatively high16
compared to most other scenarios (i.e. a run time of nearly one hour with the same processor).17
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CONCLUSIONS1
This work is the first study to consider ride-sharing potential while accounting for the2

trade-off that users are faced with when presented with the option of ride-sharing. Previous studies,3
such as Santi et al. (10) and Alonso-Mora et al. (11), assumed that all users are potentially willing4
to ride-share as long as their waiting time and total delay do not exceed a certain threshold. This is5
not very realistic as taxi users have no reason to share their ride (and accept a delay) when they do6
not get a benefit in return. Therefore, in this study the choice to ride-share considers the trade-off of7
ride-sharing disbenefits with a discounted ride fare. The assumption is that users will only switch8
to a ride-sharing service if such a choice gives them a net positive utility over a conventional taxi9
or ride-hailing ride. Also, this work accounts for the fact that sharing a vehicle with strangers10
induces a disutility, which in literature has been found to be one of the main barriers for a successful11
implementation of ride-sharing services.12

Our results show that both users’ tolerance to delays and willingness to share a vehicle13
with co-riders can have a large impact on ride-sharing potential. Depending on the tolerance of14
users towards sharing their ride and experiencing delays caused by detours, the acceptance rate of a15
ride-sharing service varied between 25.4% and 98.8%, the average delay between 15.2% and 61.3%16
of the direct travel time, and the gross effective vehicle transportation distance ratio between 0.9517
and 1.36.18

Furthermore, this study has shown that the design of a ride-sharing service, such as its19
pricing structure, can potentially significantly affect the expected societal benefits and service20
quality. A relatively small additional discount of 7.5% per co-rider with whom a user shares their21
ride at maximum occupancy, on top of the standard 50% discount assumed throughout this research,22
can more than double the total reduction in vehicle kilometers. At the same time, the percentage of23
rejected requests drops from 24.0% to 17.9% if such a discount policy is implemented. In return for24
a discount, users are on average burdened with an extra travel time of 24.5% of the direct travel25
time. Hence, the pricing structure of alternative scenarios can have substantial consequences for26
both service performance and related externalities.27

This study also shows that the potential of a ride-sharing system can be greatly dependent28
on external variables, such as the spatial distribution of demand. Demand in reality is likely to29
be at least somewhat concentrated due to spatial clustering of activities like work, residency and30
shopping. This study shows for example that, when most requests are directed towards the center of31
the grid, typical for a morning peak, the performance of a ride-sharing system is relatively poor,32
both in terms of the level of service and efficiency. In such a case, only 62.9% of all requests can33
be served, compared to 76.0% when demand is perfectly uniform. The (gross) effective vehicle34
transportation distance ratio can even drop below 1 when the directionality in demand is high. Level35
of service of ride-sharing users is then found to be low too, following from long waiting times36
before pick-up and consequently a relatively large average total delay of 31.9% of the direct travel37
time. To summarize, we found that directionality in demand negatively affects both level of service38
and operational efficiency of ride-sharing services.39

When representing the choice whether to ride-share or not as a compensatory function40
between travel attributes (travel time, ride fare and number of co-riders), the potential for reducing41
the total vehicle mileage is found to be relatively limited. At most 27% of the vehicle kilometers42
in the network can be removed, which is attained when users have a relatively high willingness to43
share (i.e. they are willing to pay no more than 1 euro to upgrade a shared ride to an individual one,44
assuming no change in travel time). In a few scenarios in this study, a ride-sharing system was even45
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found to result in more vehicle kilometers than an equivalent system offering only individual rides1
would. The above findings suggest that the efficiency benefits of ride-sharing services have been2
overestimated in previous research. For comparison, a study on ride-sharing in New York by Santi3
et al. (10) found a 40% reduction in total vehicle mileage.4

There are other potentially relevant attributes of which the effect can be investigated, besides5
the ones considered in this work. Future research can focus for example on the effect of fleet6
properties (capacity and fleet size), the effect of the fares of alternative (single-rider) services,7
test a more complex discounting mechanism than the one assumed here, or investigate external8
variables like the number of stop locations in the network. The developed model can also be used9
to investigate ride-sharing with a fleet of autonomous vehicles, for which it would be especially10
relevant to find how willingness to share depends on the presence or absence of a driver. Also, it11
might be interesting to find whether ride-sharing efficiency can be improved by rejecting requests12
that negatively affect ride-sharing performance on a system level, such as requests that are destined13
for a location far away from where new demand is expected. Moreover, the validity of ride-sharing14
studies can be improved by the incorporation of mode choice, whereby passengers can choose to15
opt for the ride-sharing service or travel using other means. Finally, future research can address the16
equity of users in a ride-sharing setting, as users in remote areas are potentially more likely to be17
rejected by a ride-sharing service, which negatively affects their accessibility compared to other18
users.19
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