
Visually-Guided Motion Planning for Autonomous Driving from Interactive
Demonstrations

Rodrigo Pérez-Dattaria,1,∗, Bruno Britoa,1, Oscar de Groota, Jens Kobera, Javier Alonso-Moraa

aCognitive Robotics (CoR) department, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands

Abstract

The successful integration of autonomous robots in real-world environments strongly depends on their ability to reason
from context and take socially acceptable actions. Current autonomous navigation systems mainly rely on geometric
information and hard-coded rules to induce safe and socially compliant behaviors. Yet, in unstructured urban scenarios
these approaches can become costly and suboptimal. In this paper, we introduce a motion planning framework consisting
of two components: a data-driven policy that uses visual inputs and human feedback to generate socially compliant
driving behaviors (encoded by high-level decision variables), and a local trajectory optimization method that executes
these behaviors (ensuring safety). In particular, we employ Interactive Imitation Learning to jointly train the policy
with the local planner, a Model Predictive Controller (MPC), which results in safe and human-like driving behaviors.
Our approach is validated in realistic simulated urban scenarios. Qualitative results show the similarity of the learned
behaviors with human driving. Furthermore, navigation performance is substantially improved in terms of safety, i.e.,
number of collisions, as compared to prior trajectory optimization frameworks, and in terms of data-efficiency as compared
to prior learning-based frameworks, broadening the operational domain of MPC to more realistic autonomous driving
scenarios.

Keywords: Interactive Imitation Learning, Model Predictive Control, Autonomous Driving, Deep Learning, Motion
Planning, Human in the Loop

1. Introduction

Autonomous navigation in unstructured human envi-
ronments (e.g., indoor and urban) poses a combination of
problems, such as continuously changing conditions (e.g.,
sunny and cloudy), interaction/coordination with other
agents (e.g., pedestrians, bicycles, human drivers and/or
other automated vehicles), and ensuring the safety of peo-
ple inside the vehicle and/or other agents in environment.
Consequently, building robust robotic solutions in such
environments remains challenging.

The safety of Autonomous Vehicles (AV) has been a
main topic of interest in the research community. Optimization-
based techniques for local trajectory planning, such as
Model Predictive Control (MPC), have gained popular-
ity, since they can provide safety guarantees through the
enforcement of constraints, e.g., for collision avoidance.
Nevertheless, the performance of optimization-based meth-
ods is limited in complex environments, since they typically
rely on geometric information and hard-coded rules to con-
trol high-level variables (e.g., switching between behaviors,

∗Corresponding author
Email addresses: r.j.perezdattari@tudelft.nl (Rodrigo

Pérez-Dattari), bruno.debrito@tudelft.nl (Bruno Brito),
o.m.degroot@tudelft.nl (Oscar de Groot), j.kober@tudelft.nl
(Jens Kober), j.alonsomora@tudelft.nl (Javier Alonso-Mora)

1The authors contributed equally.

controlling velocity references, etc.), which are either costly
or lead to suboptimal solutions. Hence, the interaction and
coordination of AVs with other agents, in unstructured
environments, remains challenging.

To address this limitation, recently, there has been a
growing interest in approaches that combine the strengths
of optimization-based methods with the ones of learning-
based methods (Veličković and Blundell, 2021; Zamfirache
et al., 2022). Learning techniques have shown to be a
powerful tool for finding complex solutions directly from
environment data, without requiring models.

In this work, we propose to learn human-like driving
behaviors and encode them in a Model Predictive Con-
touring Control (MPCC) planner (Ferranti et al., 2019).
Human-like driving behaviors are desired in AVs as they
produce trust in other human drivers and facilitate coordi-
nation/interaction with other agents by acting predictably
(Waytz et al., 2014). However, human data can be ex-
pensive to obtain, and modeling complex environments
with changing conditions may require large amounts of
data. Consequently, we propose to follow an Interactive
Imitation Learning (IIL) approach (Amershi et al., 2014;
Chernova and Veloso, 2009; Kelly et al., 2019), which—in
contrast to non-interactive Imitation Learning approaches
(e.g., Behavioral Cloning)— is data efficient. IIL employs
online human feedback to transfer implicit knowledge from

Preprint submitted to Elsevier August 9, 2022

IFAC Engineering Applications of Artificial Intelligence Journal

Figure 1: Proposed framework, Social MPCC. The Visual Guidance
observes the environment from state sh and suggests the next velocity
reference uh to the Local Planner. Then, the Local Planner, as a
function of the state sl, the velocity reference uh and the global path
P computes a local trajectory and sends a control command ul to
the vehicle. Depending on the resulting vehicle behavior, the teacher
may correct the Visual Guidance through the signal h to improve its
behavior.

humans to robots.
To induce the learned behavior in the solutions of the

MPCC, we propose to learn to control high-level variables
used in its objective function such that the resulting op-
timization process yields solutions corresponding to the
desired behavior. As a first step, we focus on controlling
the forward velocity reference of the MPCC. This reference
has a large impact on the vehicle’s behavior and it is chal-
lenging to design otherwise, given that it depends on many
variables (Kolekar et al., 2020). To closely match human
behavior, we propose to learn to control this reference from
(approximately) the same visual input that humans use,
the first-person front-view of the vehicle (see Figure 1).

The main contributions of this work are:

• Combining the state-of-the-art from control and ma-
chine learning in a unified framework and problem
formulation for motion planning.

• A framework to generate safe and socially-compliant
trajectories in unstructured urban scenarios by learn-
ing human-like driving behavior efficiently.

We present simulation results in realistic driving sce-
narios using the CARLA simulator2 (Dosovitskiy et al.,
2017). The presented results show that our approach can
data-efficiently learn velocity references from human feed-
back using images as input, enhancing the performance
of local trajectory planners and generating safe and so-
cially compliant behaviors. Furthermore, we compare our
approach with optimization-based-only and learning-based-
only baselines, demonstrating the strength of combining

2Code available at: https://github.com/rperezdattari/

Social-MPCC

both methods. Finally, qualitative results show the ability
of the method to learn human-like driving behaviors.

The remaining of this paper is organized as follows:
Section 2 presents works related to decision-making algo-
rithms for motion planning and IIL methods, Section 3 the
problem formulation, Section 4 the proposed method and
Section 5 the experimental results.

2. Related Work

In this section, we review work from the two fields that
are brought together in this paper: 1) Motion Planning
and 2) Interactive Imitation Learning.

2.1. Motion Planning

Classical autonomous navigation systems frequently
employ a hierarchic planning architecture decomposing the
navigation pipeline into a sequence of blocks performing
different sub-tasks such as perception, high-level decision
making and motion planning (Paden et al., 2016). These
works can be divided into three main categories: rule-based,
optimization-based and learning-based.

Rule-based methods aim to translate human-driving
rules and behaviors into handcrafted functions. These
methods have demonstrated good performance in some real
structured scenarios such as precedence at an intersection
(Baker and Dolan, 2008). Nevertheless, these methods are
scenario specific and are prone to fail if the environment
structure changes.

Optimization-based approaches typically model the
decision-making problem as a Partially Observable Markov
Decision Process (POMDP) as the other agents’ inten-
tions are not directly observable (Hubmann et al., 2017).
To model interaction, Zhou et al. (2018) proposed a joint
approach for behavior prediction and planning, combin-
ing online POMDP solvers (Cai et al., 2021) for behavior
prediction and nonlinear receding horizon control for tra-
jectory planning (Brito et al., 2019). Nevertheless, these
approaches have scalability issues and assume structured
navigation scenarios.

Learning-based methods can scale to cluttered and un-
structured environments (Everett et al., 2021) allowing to
incorporate high-dimensional data (e.g., RGB-D images,
LiDAR point-clouds, etc.) into the decision-making pol-
icy (Fan et al.). For instance, Reinforcement Learning
(RL) methods have been used to learn end-to-end control
policies for autonomous racing (Schwarting et al., 2021)
and indoor navigation (Kulhánek et al., 2020) by learning
a policy optimizing for long-term rewards. To generate
socially compliant behaviors, Chen et al. (2017b) proposed
to introduce social rules into the learning framework by
designing a reward function penalizing the agent when not
respecting human navigation norms. Yet, these methods
do not provide any robustness or safety guarantees (Huang
et al., 2017).

Recently, works combining learning-based approaches
for decision-making and optimization-based methods for

2

https://github.com/rperezdattari/Social-MPCC
https://github.com/rperezdattari/Social-MPCC

motion planning have demonstrated to achieve superior
performance by providing guidance on high-level decision
variables needed to solve the optimization (Qiao et al.,
2020; Song and Scaramuzza, 2020). Closely related to our
work, Tolani et al. (2021) learn a subgoal policy from vi-
sual information using Model Predictive Control (MPC)
as supervisor. In contrast, we propose to learn a visual
decision-making policy from human feedback. Similarly,
Huang et al. (2021) use adversarial learning to train an
end-to-end decision-making module from human demon-
strations. Nevertheless, it assumes a high-definition map to
be available and considers a discrete set of decisions limiting
the applicability of this approach only to well constrained
driving scenarios.

2.2. Interactive Imitation Learning

Interactive Imitation Learning (IIL) is a branch of Im-
itation Learning (IL) whose objective is to develop algo-
rithms that transfer a policy from a teacher to a learning
agent (learner) through interactions between the teacher
and the learner (Argall et al., 2009; Kelly et al., 2019;
Pérez-Dattari et al., 2020). Some examples of feedback are
demonstrations (Chernova and Veloso, 2009; Ross et al.,
2011), relative corrections (Celemin and Ruiz-del Solar,
2019; Pérez-Dattari et al., 2020), preferences (Christiano
et al., 2017) and evaluations (Knox and Stone, 2009). In
autonomous driving, it is common to find methods that
work with humans as teachers, and demonstrations as feed-
back (Bojarski et al., 2016; Kelly et al., 2019; Zhan et al.,
2019; Prakash et al., 2020; Codevilla et al., 2019), given
that 1) it is easy to find humans that know how to drive
a vehicle, and 2) human-like driving is a desired feature
in autonomous vehicles (Kolekar et al., 2020; Zhan et al.,
2019). Therefore, building on top of this evidence, the IIL
part of our work follows this same strategy.

Although, in the context of IIL, demonstrations are in-
terpreted as feedback, they can be applied in non-interactive
IL algorithms as well, i.e., Behavioral Cloning (BC) and
Inverse Reinforcement Learning (IRL) (Osa et al., 2018).
However, compared to non-interactive methods, IIL poses
an ideal setting to learn from humans, as it reduces hu-
man effort by being data efficient. This is achieved by
providing feedback online over trajectories induced by the
learner’s policy, which improves its behavior only in the
relevant regions of the state space (i.e., the ones that are
likely to be visited) (Ross et al., 2011; Spencer et al., 2022)
Furthermore, IRL, not only suffers from inefficiency in
terms of amount of demonstrations, but also suffers from
inefficiency in terms of interactions with the environment
(Ho and Ermon, 2016; Osa et al., 2018), which can be a
limitation when a realistic simulator of the environment is
not available.

The IIL method employed in this paper can be inter-
preted as a practical variation of DAgger (Ross et al., 2011),
since DAgger is not designed to work interactively with
humans. DAgger expects the teacher to provide demon-
strations at every state visited by the learner, and the tra-

jectories generated by the learner are a results of a mixed
control setting that combines actions from the learner and
from the teacher. However, humans are sensitive to timing
and latency; therefore, providing good demonstrations over
an agent that is partially controlled is counter intuitive and
cognitively demanding (Laskey et al., 2017). Alternatively,
the teacher can observe the learner’s behavior and intervene
whenever this behavior is not appropriate, taking control
over the learner and use these actions as demonstrations,
as proposed by Kelly et al. (2019); Waytowich et al. (2018);
Spencer et al. (2022). The method used in this work be-
longs to this group of approaches. Note that this group
can be extended (Mandlekar et al., 2020) and combined
with other types of feedback (Chisari et al., 2022) and/or
active learning (Ablett et al., 2020).

3. Preliminaries

Throughout this paper we use the term ego-agent to re-
fer to the agent controlled by our method (e.g., autonomous
vehicle or mobile robot) and other agents to refer to the
non-controllable agents (e.g., human-driven vehicles, pedes-
trians, or robots) in the surrounding of the ego-agent. More-
over, vectors are denoted in bold lowercase letters, x, and
sets in calligraphic uppercase, S. The Euclidean norm of x
is denoted by ∥x∥ and ∥x∥Q = xTQx denotes the weighted
squared norm.

3.1. Problem Formulation

Consider the navigation scenario where an ego-agent
must navigate from an initial position p0 to a goal po-
sition g. At the beginning of an episode, the ego-agent
receives a global reference path P to follow from a path
planner consisting of a sequence of M reference way points
pref
m = [xref

m , yrefm] ∈ R2 with m ∈M := {1, . . . ,M}. Then,
consider a hierarchical control structure with a high-level
control policy πh

θ , defined as a parametrized function with
parameters θ, and a predefined optimization-based low-
level controller πl that follows P . The superscripts h and l
are used to denote the variables related to the high-level
and low-level controllers, respectively. For each time step
k, the high-level policy receives the state shk and takes an
action uh

k = πh
θ(s

h
k). Subsequently, uh

k is provided, along
with the state slk and the global reference path, to the low-
level controller, which takes an action ul

k = πl(slk,u
h
k;P).

This action leads to the next state slk+1 = f(slk,u
l
k), under

the dynamic model f(slk,u
l
k)

3.
The policy that encompasses the combination of πh

θ and
πl is denoted as πθ(sk;P), where sk = [shk, s

l
k]. Note that

the control output uk = πθ(sk;P) is the same as ul
k, since

ul
k is the output applied to the vehicle, while uh

k acts on
the parameters of πl.

3This is identical to the Vehicle Model used in the simulation
defined in Section 4.3.1

3

Simultaneously, we consider that for each time step, the
ego-agent receives the feedback signal hk, which provides
information about a desired, expert behavior, πexp. The
goal is to employ hk to find the parameters θ such that πθ

converges to πexp. By doing so, πh
θ learns to guide πl such

that a desired behavior is achieved when following P .
Let pπθ

(τ) be a trajectory distribution induced by πθ,
and pπexp(τ) a trajectory distribution induced by πexp,
then, the problem can be formulated as the minimization
of the (forward) Kullback–Leibler divergence between the
trajectories induced by πθ and πexp (Bishop, 2006):

θ∗ = argmin
θ

DKL (pπθ
(τ)∥pπexp(τ)) (1a)

s.t. slk+1 = f
(
slk,u

l
k

)
, (1b)

ul
k = πl(slk,u

h
k;P), (1c)

ul
k ∈ U l, uh

k ∈ Uh, slk ∈ S l, shk ∈ Sh,
(1d)

∀k ∈ R+

where (1b) are the kino-dynamic constraints and (1d) rep-
resents the state and control constraints where Si and U i,
i ∈ {l,h}, are the set of admissible states and control inputs
(e.g., maximum agents’ speed), respectively.

Note that, in this work, hk is provided by a human;
hence, θ∗ will depend on the human’s judgment about the
task.

4. METHOD

In this section, we introduce the proposed socially-
aware Model Predictive Contouring Control (Social-MPCC)
framework.

4.1. Overview

The proposed driving system can be divided into two
parts: Visual Guidance and Local Motion Planner.
The Local Motion Planner πl follows a given set of way
points and ensures to avoid obstacles. Simultaneously, the
Visual Guidance system πh

θ uses images captured by the
front camera view of the vehicle to command a desired
forward velocity reference vref to the Local Motion Planner
such that human-like driving behavior is generated. Given
that the vehicle’s steering commands are defined by the
local planner only, it is not possible to exactly match a
reference human-like behavior by means of controlling vref

alone. Nevertheless, arguably, vrefk is expressive enough to
accurately resemble human-like behavior in most of the
situations; for instance, in the case of a vehicle in a city, the
vehicle should reduce its velocity in the crossroads, stop at
red lights, accelerate when overtaking other cars, etc.

4.2. Visual Guidance

For each time step k, the Visual Guidance system (VG),
represented as the parametrized policy πh

θ , translates hu-
man driving behavior and scene context into a forward
velocity reference vrefk , which corresponds the high-level
control output uh

k := vrefk . The state of this function shk
corresponds to the front camera view of the vehicle jk, and,
eventually, other information such as the vehicle’s current
speed. The objective is to find uh∗

k ∀k such that, given
the Local Motion Planner, Eq. (1) is solved. As discussed
in Section 1 and Section 2, given the challenges in model-
ing human behavior, Interactive Imitation Learning (IIL)
arises as an appealing and effective approach to tackle this
problem, since it allows to data-efficiently and robustly
learn behaviors from humans.

4.2.1. Interactive Imitation Learning Formulation

In IIL, a human that acts as a teacher is involved in
the learning process of an agent. Feedback signals hk are
generated by the human to modify the learner’s policy to-
wards a desired behavior in an online learning manner. The
context of autonomous navigation provides a framework
where humans, by driving a vehicle, are able to execute
the actions which they consider to be the best for a given
state. Consequently, it comes natural to use feedback in
the form of demonstrations.

In this work, a Learning from Interventions scheme is
employed, i.e., every time the human considers the agent to
be executing an erroneous behavior, the teacher takes con-
trol over the agent’s actions until it gets back into a region
where the observed behavior is the desired one. The data
gathered in these interventions is used as demonstrations
for improving the agent’s behavior following a supervised
learning approach. The teacher’s feedback is represented by
two variables: 1) i, a Boolean that indicates if the human
is intervening (if i = 1, the human intervenes; if i = 0, s/he
does not), and 2) uh∗

k , which corresponds to the teacher’s
optimal action for the high-level controller to take (i.e.,
these actions follow the expert policy πexp). For i = 1, the
feedback is defined as hk = uh∗

k ; for i = 0, it is not defined.
In practice, this works as follows: initially, the VG cre-

ates a velocity reference uh
k that the Local Motion Planner

tracks (along with a set of way points). The human only
observes the behavior of the AV (i = 0), as long as s/he
considers that it is adequate. Every time the planner gen-
erates undesired control commands, the human (indirectly)
takes control over it (i = 1) by overwriting the output of
the VG with the correct velocity reference uh∗

k . The data
from these interventions (i.e., trajectories containing every
state-action pair [shk,u

h∗
k]) is collected, and employed to

improve the agent’s behavior.
Eq. (1) can be solved as an Imitation Learning problem

∀hk when i = 1 (i.e., for every state-action pair collected
from the interventions). If, every time the teacher inter-
venes, the demonstrated trajectories are stored in a dataset
D, Eq. (1) can be solved iteratively by sampling B tra-

4

jectories with length K from D in every iteration and
minimizing

L(θ) = − 1

B

B∑
b=1

K∑
k=0

lnπh
θ(u

h∗
b,k|shb,k) (2)

through gradient descent (Abramson et al., 2020). Note
that this formulation assumes that πh

θ is a stochastic policy,
but in this work πh

θ is deterministic. However, if we assume
that the optimized distribution is Gaussian with a fixed
variance, the mean of this distribution can be equivalently
obtained (and represented by the deterministic policy πh

θ)
by minimizing the Mean Squared Error (MSE) (Osa et al.,
2018; Mandlekar et al., 2020)

L(θ) = 1

B

B∑
b=1

K∑
k=0

(
uh∗
b,k − πh

θ(s
h
b,k)

)2
. (3)

This optimization process does not mention the con-
straints shown in Eq. (1) because they are implicitly cap-
tured in the demonstration data (given that it was collected
following actions generated by the Local Motion Planner).

4.2.2. iDAgger

As depicted in Section 2, we use an IIL method based
on demonstrations similar to the one described by Goecks
et al. (2019) that solves Eq. (3); however, no name was
provided by the authors to this method specifically, as they
employed a subgroup of modules from a larger framework
introduced by Waytowich et al. (2018). Hence, we will
refer to it as iDAgger (for intervention DAgger). Note that
similar ideas are employed in other works as well (Kelly
et al., 2019; Spencer et al., 2020; Mandlekar et al., 2020).

iDAgger generates a dataset D online using feedback,
in the form of interventions, provided by a human teacher.
The state-action pairs generated in every intervention, i.e.,
[shk,u

h∗
k], by the human are aggregated to D. Every τ

time steps, the learner updates its policy πh
θ by sampling

a subset of D and minimizing Eq. (3). Furthermore, πh
θ

can be initialized from an initial set of demonstrations
collected offline. As shown by Spencer et al. (2022), the
policies learned with this type of online learning algorithm
are guaranteed to perform well (i.e., trajectory cost grows
linearly in the task horizon and imitation error) under the
intervention data distribution.

4.3. Local Motion Planner

We built upon the MPC formulation provided by the
Model Predictive Contour Control (MPCC) (Ferranti et al.,
2019) to generate control commands enabling the AV to
follow a reference path provided by a global path planner
(e.g., Rapidly-exploring Random Trees (RRT) (Berg et al.,
2021)) and the forward velocity reference while satisfying
dynamic and collision constraints when a feasible solution
is found.

Algorithm 1 iDAgger

1: Require: D with initial demonstrations, pre-trained
policy πh

θ and policy update period τ
2: for k = 1, 2, . . . do
3: observe shk
4: get intervention signal i
5: if i is True then
6: get feedback hk ← uh∗

k

7: aggregate {shk,hk} to D
8: uh

k ← hk

9: else
10: uh

k ← πh
θ(s

h
k)

11: end if
12: execute uh

k

13: update πh
θ from D if mod(k, τ) is 0

14: end for

4.3.1. Vehicle Model

We use a kinematic bicycle model for the AV with state
sl = [x, y, ϕ, v], where x and y are the agent’s Cartesian
position coordinates, ϕ the heading angle and v the forward
velocity fixed in a global inertial frame W. The model is
described as follows:

ẋ = v cos(ϕ+ β)
ẏ = v sin(ϕ+ β)

ϕ̇ =
v

lr
sin(β)

v̇ = ua

β = arctan

(
lr

lf + lr
tan

(
uδ

))
(4)

where β is the velocity angle and ul is the vehicle control
input composed by the forward acceleration ua and steering
angle uδ, ul = [ua, uδ]. lr and lf are the distances of the
rear and front tires from the center of gravity of the vehicle,
respectively, and are assumed to be identical.

4.3.2. Cost Function

The velocity reference vref generated by the VG allows
controlling the AV driving behavior directly: high-velocity
reference values lead to highly aggressive behavior while low-
velocity reference values lead to cautious driving behavior.
Hence, we design the local planner’s cost function as follows:

J(slk,u
l
k, λk) =

∥∥eck(slk, λk)
∥∥
qc

+
∥∥elk(slk, λk)

∥∥
ql

+
∥∥vrefk − vk

∥∥
qv

+ ∥ua
k∥qu +

∥∥uδ
k

∥∥
qδ

(5)

where Q = {qc, ql, qv, qu, qδ} denotes the set of cost weights
and λk is the estimated progress along the reference path.
First, we minimize the contour error (eck) and lag error (elk),
to track the reference path closely. The contour error quan-
tifies how much the ego vehicle deviates from the reference
path laterally, whereas lag error is the deviation of the ego
vehicle from the reference path longitudinally. Please refer

5

to (Ferranti et al., 2019) for more details on path parame-
terization and tracking error. The third term, ∥vrefk − vk∥,
motivates the planner to follow the velocity reference pro-
vided by the Visual Guidance system closely. Finally, we
add a quadratic penalty to the control commands, ua

k and
uδ
k, to generate smooth trajectories.

4.3.3. Dynamic Obstacle Avoidance

First, we approximate the AV’s occupied area, Aego,
as union of nc circles, i.e., Āego ⊆

⋃
c∈{1,...,nc}Ac, where

Ac represents the c-th circle’s area with radius r. For the
other vehicles, the occupied area by the i-th vehicle, Ai,
is approximated by an ellipse of semi-major axis ai, semi-
minor axis bi and orientation ϕ. Then, we define a set
of non-linear constraints enforcing that each AV’s circle c
does not intersect with the i-th vehicle’s elliptical:

ci,ck (slk, s
li
k)=

[
∆xc

k

∆yck

]T
R(ϕ)T

[1
α2 0
0 1

β2

]
R(ϕ)

[
∆xc

k

∆yck

]
> 1, (6)

The parameters ∆xc
k and ∆yck represent x-y relative dis-

tances between the disc c and the ellipse i for planning step
k. α and β are function of the AV’s radius and the other
vehicle’s semi-major and semi-minor axis, respectively, and
an enlarging coefficient ensuring collision avoidance, with
α = a+ rdisc + ϵ and β = b+ rdisc + ϵ. We refer the reader
to (Brito et al., 2019) for details on how ϵ is computed.

4.3.4. Road boundaries

To compute motion plans respecting the road bound-
aries, we employ constraints on the AV’s lateral distance
(i.e., contour error) with respect to the reference path en-
suring that the vehicle stays within the road limits:

− wroad
left ≤ eck(s

l
k) ≤ wroad

right (7)

where wroad
left and wroad

right are the left and right road limits,
respectively.

4.3.5. MPCC Formulation

We formulate the motion planner as a Receding Horizon
Trajectory Optimization problem (8) with planning horizon
H conditioned on the following constraints:

ul∗
0:H−1 = min

ul
0:H−1

H−1∑
k=0

J(slk,u
l
k, λk) + J(slH , λH) (8a)

s.t. sk+1 = f(slk,u
l
k), (8b)

λk+1 = λk + vk∆t (8c)

− wroad
left ≤ ec(slk) ≤ wroad

right (8d)

ci,ck (slk, s
li
k) > 1 ∀c ∈ {1, . . . , nc}, (8e)

ul
k ∈ U l, slk ∈ S l, (8f)

∀k ∈ {0, . . . ,H}. (8g)

where ∆t is the discretization time and ul∗
0:H−1 the locally

optimal control sequence for H time-steps. The solver

Algorithm 2 Social-MPCC

1: Require: global planner, iDAgger (Algorithm 1),
MPCC and number of episodes nepisodes

2: run Visual Guidance training with iDAgger in separate
thread

3: while iepisode < nepisodes do
4: get reference path P from a global planner
5: for k = 1, 2, . . . do
6: get states shk, s

l
k from environment

7: send shk to iDAgger (Algorithm 1, line 3)
8: receive uh

k from iDAgger (Algorithm 1, line 12)
9: set vrefk ← uh

k

10: compute ul
k ← πl = MPCC(vrefk , slk;P) (Eq.

8)
11: execute ul

k in vehicle
12: compute done ← collision/deadlock detected

or teacher request
13: if done then
14: increment iepisode
15: break
16: end if
17: end for
18: end while

employed attempts to find a solution for the MPCC problem
for a fixed number of iterations. If a feasible solution is
found, we apply only the first control input for each step and
recompute a new solution in the next iteration considering
new observed information in a receding horizon fashion.
Otherwise we employ a safety control command ul

safety.

4.4. Social-MPCC

Overall, the Social-MPCC framework utilizes the Visual
Guidance policy to provide a velocity reference that controls
the vehicle’s behavior through the cost function that is
optimized by the Local Motion Planner. Imitation Learning
is used to optimize the VG’s parameters to model human
behavior.

Algorithm 2 presents the overall framework. First,
iDAgger (Algorithm 1) is initialized to start the training of
the Visual Guidance (line 2). Then, at the beginning of each
episode, the reference path P to be followed by the MPCC
is obtained from a global planner (line 4). Afterwards,
for every time step of each episode, the velocity reference
vrefk = uh

k is received from iDAgger (lines 8-9) and fed to
the MPCC to compute the control command ul

k (line 10).
Finally, ul

k controls the AV (line 11). Each episode ends if
a collision or a deadlock is detected. Moreover, the human
teacher can also request the end of the episode (lines 12-15).

5. RESULTS

This section presents simulation results in a realistic ur-
ban scenario populated with pedestrians and other vehicles
(Fig. 3). First, we quantify the performance throughout

6

the training procedure (Section 5.2). Then, we show a qual-
itative evaluation of the method (Section 5.3). Finally, we
present performance results (Section 5.4) of the proposed
method against baselines.

5.1. Experimental setup

Simulation results were carried out on an Intel Core
i9, 32GB of RAM CPU @ 2.40GHz. The non-linear and
non-convex MPCC problem presented in Section 4.3 was
solved using the ForcesPro (Zanelli et al., 2020) solver. The
Visual Guidance was modeled with a Deep Neural Network
(DNN) implemented and optimized in TensorFlow 2 (Abadi
et al., 2015). We used the open-source Carla simulator
(Dosovitskiy et al., 2017) to create the simulation environ-
ment where the Traffic Manager module was employed to
simulate other vehicles and the AI controller to control the
pedestrians. The complete framework was interfaced using
the Robot Operating System (ROS) (Quigley et al., 2009).

5.1.1. Visual Guidance: Deep Neural Network Architecture

The DNN architecture employed to represent the VG
is defined by the mapping πh

θ : shk 7→ vrefk . The VG has
to 1) be able to process images jk, 2) deal with partial
observability due to the absence of temporal information
in jk. Moreover, to further improve the input state of the
VG, the vehicle’s speed vk can also be provided to the
network. Convolutional layers were employed to process
jk and recurrent layers to deal with the mentioned partial
observability (Goodfellow et al., 2016). Hence, the high-
level state was defined as shk = [jk, s

rec
k , vk], where sreck

corresponds to the hidden state of the recurrent layers.
To increase the generalization properties and data-

efficiency of the network, two techniques were employed:
1) semantic segmentation (Minaee et al., 2021), and 2)
Transfer Learning (TL) (Tan et al., 2018). The input im-
age jk was semantically segmented using a Carla module;
however, in practice, DNN models such as Segnet (Badri-
narayanan et al., 2017) or DeepLab (Chen et al., 2017a)
can be employed. For TL, we employed a VGG (Simonyan
and Zisserman, 2014) model pretrained on ImageNet (Deng
et al., 2009). The last layer of the VGG was removed and
replaced with recurrent and fully connected layers with
trainable parameters to be optimized with Eq. (3). Hence,
the VGG was used as a state representation/feature ex-
traction machine and its weights were not modified during
the optimization of πh

θ . LSTM (Hochreiter and Schmid-
huber, 1997) layers were employed as the recurrent layers
of the network. Finally, to optimize Eq. (3) with a recur-
rent DNN, we employed the bootstrapped random updates
method (Hausknecht and Stone, 2015). Figure 2 shows the
complete VG model.

Table 1 presents the hyperparameters values used for
the local planner, training algorithm and simulation envi-
ronment.

Figure 2: Visual Guidance architecture (Section 5.1.1). The segmen-
tation module receives the image jk and provides a segmented image
to the feature extraction module. The recurrent policy takes these
features as an input and generates the velocity reference vrefk . In this
work, a Carla module was used for the segmentation module and a
pre-trained VGG19 network was used for feature extraction. The
recurrent policy consists of fully-connected layers (FCX), and one
recurrent layer (R1). FC1, FC2, FC3, FC4 and FC5 use Leaky ReLU
(Maas et al., 2013) as activation function. FC1 has 150 neurons and
the other layers have 1000 neurons. FC6 has a linear activation and
one neuron, as it is the output layer. The hidden state size of R1 is
150. The variable extk corresponds to extensions to the input of the
network, such as traffic light state and/or information about where
to go when learning in an end-to-end manner.

5.2. Training procedure

Fig. 3 shows the training environment. At the beginning
of each episode, Ncars cars and Npedestrians pedestrians are
spawned in random locations. The AV receives a sequence
of way-points towards a random goal position provided
by the Carla Route Planner. An episode ends if the AV
collides, if it reaches the goal position successfully, if a
deadlock occurs, or if a teacher request is received.

Fig. 4 presents the VG’s learning performance. The first
plot shows the amount of times the teacher corrected the
policy’s actions, and the second plot the moving average
of the mean squared error between the teacher and the
policy’s actions. The training procedure incorporates two
phases: collection of an initial set of demonstrations used to
train an initial policy, and the interactive learning process
(as shown in Algorithm 1). Given that during the first
NSupervised steps the teacher provides feedback continuously,
the number of demonstrations grows linearly, as depicted
in the upper plot of Fig. 4 from t = 0 s to t ≈ 1500 s.
Afterwards, feedback is only provided when the policy acts
erroneously, which will depend on the episode’s complexity
and the novelty it provides. After t ≈ 4500 s, the number of
demonstrations remains constant, showing that the policy
is performing well and the teacher does not need to provide
more feedback.

The bottom plot shows that the moving average of the
root mean squared error between the VG’s action and the
provided supervised action reduces over time, stabilizing at
around 2 m/s (note that 0 m/s ≤ uh

k ≤ 8 m/s). Although
this error may seem large, this result is expected, since
humans are not always consistent about the feedback they
provide (Chernova and Veloso, 2008; Valletta et al., 2021),
and data with irreducible error is collected. Nevertheless,
this is not considered to be an issue in this experiment,
as, when the mean squared error is minimized, the modes
present in the data are averaged, which was not observed as

7

Table 1: Key hyperparameters used for local planner, learning algorithm and simulated environment.

Hyperparameter Value
Simulated environment NCars 100

NPedestrians 200
NSupervised 5
Camera FoV 90.0◦

Visual Guidance Interactive training time 2 hours
Image resolution 64 × 64 pixels
Feature extractor VGG
Recurrent layer LSTM
Optimizer Adam
Learning rate 1e− 5
Batch size 100
Training iterations per episode 1000

Local planner Q = {qc, ql, qv, qu, qδ} {0.1, 0.2, 1.0, 1.2, 0.1}
Number solver iterations 500
usafety [−2.0, 0.0]
Solver method Primal-Dual

Interior-Point Method

being detrimental. Inconsistencies only arose in situations
where their average would not jeopardize the safety of the
learned behavior (e.g., cruise speed in long roads or the
response time to start accelerating after a green light),
while the general rules of driving (e.g., stopping at red
lights or if there are pedestrians crossing the street) were
always respected.

5.3. Qualitative Results

This section analyzes the AV behavior using our method
for two driving scenarios. In the first scenario, depicted
in Fig. 5a, the AV approaches a crossing area and has
to perform a left-turn maneuver. Between t1 and t2, the
VG continuously reduces the velocity reference as the AV
approaches the crossing area yielding to the vehicle com-
ing from the right. Then, the velocity reference initially
increases, motivating the AV to cross the road, between
t = 215 s and t = 217 s, and keeps a continuous reference
while turning left, between t = 217 s and t = 222 s. Once
the vehicle finishes turning left, approximately at t = 222
s, the velocity reference is increased again.

In the second scenario, depicted in Fig. 5b, a pedestrian
crosses the road in front of the AV. The VG reduces the
velocity reference to let the pedestrian cross, between t ≈
595 s and t ≈ 598 s. Once the pedestrian finishes crossing,
the reference is increased. Afterwards, to safely perform a
right turn maneuver, the velocity reference is reduced.

More scenarios can be found in the attached video4,
where it is possible to appreciate that the exhibited behav-
iors resemble human driving.

5.4. Quantitative Results

The objective of this section is to study, quantitatively,
the effect on the performance of a trajectory planner when

4Available at: https://youtu.be/Ph7v25mEg7c

optimization-based and learning-based methods are com-
bined. To achieve this, we study three types of algorithms:
1) optimization-based only (MPCC), 2) optimization-based
and learning-based combined (Social-MPCC with and with-
out traffic information) and 3) completely data-driven
(End-to-end learning with traffic information), which are
described below:

• MPCC: Local Motion Planner with constant velocity
reference.

• Social-MPCC: the proposed Social-MPCC frame-
work.

• Social-MPCC with traffic information: Social-
MPCC with traffic lights’ information in its state.

• End-to-end learning with traffic information:
same as before, but the AV’s control ul = [ua, uδ] is
learned using iDAgger alone.

To test the flexibility of the proposed framework, two
variations of Social-MPCC are presented, one that is general
to any autonomous driving scenario and one that is specific
to driving in a city. In the general case, the structure of the
VG is as explained in Section 5.1.1; in the specific case, the
input is extended with the traffic lights’ state (see Fig. 2).
Note that, strictly speaking, the traffic lights’ status is also
fed to the neural network in the general case, as it can be
perceived from few pixels in jk when the AV approaches a
traffic light. Nevertheless, to obtain real-time performance,
it is necessary to limit the input’s resolution; hence, the
resolution of the images was not high enough to effectively
use the traffic lights’ information from them.

It is to be expected that Social-MPCC will perform
better when traffic information is included into the system
than when it is not. Therefore, to obtain a fair comparison

8

https://youtu.be/Ph7v25mEg7c

(a) Top view city.

(b) Ego vehicle’s back view.

Figure 3: Carla simulation environment.

against the end-to-end policy, the traffic lights’ state is
also employed in this case. Moreover, when the complete
behavior is learned from data, it is also necessary to provide
information to the network about where the vehicle should
go, as in the other methods this information is given to
the MPCC through P . To achieve this, the network was
provided with sin(γ) (in the same way as the traffic lights’
state, see Fig. 2), where γ is the angle between the center
of the vehicle and the next way-point located at distance
of ∼ 15 m from it.

Finally, to test the data efficiency of Social-MPCC,
only 2 hours were employed for the complete learning
process of the experiments, as opposed to other methods
in the literature that can use 100–200× more human time
(e.g., ∼ 300 hours (Vitelli et al., 2021)). Table 2 compares
the performance of the introduced methods in terms of
number of collisions per traveled distance and percentage of
deadlocks. In terms of computation performance, the VG
(i.e., DNN) has an average computation time of 5.1± 0.9
ms, while the MPCC optimization problem (Eq. (8)) takes
on average 3.0± 1.35 ms.

5.4.1. Discussion

From Table 2 it can be observed that the performance
of MPCC is drastically improved by Social-MPCC with
only 2 hours of training. With the general Social-MPCC

Figure 4: Accumulated feedback and policy error evolution during
training. The top plot shows the number of times the teacher had to
correct the policy’s action and the bottom the average policy’s action
error.

framework, it was possible to reduce the amount of colli-
sions per kilometer by 3.66 times. Furthermore, in the case
in which the traffic lights’ information was provided to the
VG, this value incremented to 7.03 and the percentage of
deadlocks was reduced to 13 %.

Deadlocks occurred when the vehicle was stationary
for an extended period of time (600 time steps in this ex-
periment). Hence, when no feasible solutions were found
by the MPCC, the activation of ul

safety could have led to
deadlocks. Interestingly, the VG also generated deadlocks.
It was observed that the DNN could get stuck by constantly
providing zero forward velocity reference to the local plan-
ner. Nevertheless, the combination of MPCC and VG did
not increase the number of deadlocks when combined in
Social-MPCC; furthermore, the number of deadlocks was
reduced when the traffic lights’ information was employed
in the system. This occurred because an adaptive forward
velocity reference can help the MPCC find solutions in
cases where it would otherwise get stuck.

Finally, it was observed that the end-to-end learner
achieved an acceptable performance; however, Social-MPCC
showed to be superior after two hours of training. Increas-
ing the action space of the VG to also include a steering
angle reference makes the learning problem considerably
harder. This is can be observed with both the number
of collisions per kilometer (5.24× more) and the amount
of deadlocks (1.38× more) that the end-to-end learner ob-
tained.

5.4.2. Analysis Social-MPCC

Although IIL methods are very data efficient, it is still
not possible to learn a flawless behavior in 2 hours; more-
over, assumptions in the MPCC’s formulation may cause
it to perform suboptimally. Hence, there are situations in
which our method fails. We have visually inspected the

9

(a) Left-turn maneuver.

(b) Pedestrian crossing the road.

Figure 5: The blue circles depict the MPCC’s velocity reference provided by the VG and the blue lines the road constraints. The red circles
depict the predicted constant velocity trajectory for the other vehicles or pedestrians.

Table 2: Statistic results for 100 episodes of Social-MPCC compared to baselines.

No. Collisions per km. % of deadlocks
MPCC (Ferranti et al., 2019) 2.60 17
Social-MPCC 0.71 17
Social-MPCC with traffic lights 0.37 13
End-to-end with traffic lights 1.94 18

training episodes and identified the main factors leading
to failure (i.e., collisions). Table 3 presents the five main
failure factors and their frequency considering a total of
100 episodes.

The categories in Table 3 are presented bellow:

• Unusual situations: occasionally, the AV may get
into situations that are not common, such as inter-
acting with oddly shape vehicles or with multiple
vehicles that got stuck and not moving, that are un-

likely to by encountered during training. Therefore,
the VG may not be trained in similar circumstances
and consequently generate incorrect behaviors.

• Outside the camera Field of View (FoV): due
to the limited FoV of the first person view camera
used by the VG, our system is not able to obtain all
of the relevant visual information for driving in every
situation. Hence, there are cases in which obstacles
are not perceived on time, leaving the system too

10

Table 3: Analysis of failure episodes: number of episodes per factor
leading to failure. We consider a total of 100 episodes.

Factor № episodes
Unusual situations 5
Outside the camera FoV 1
Wrong predictions 1
Small obstacles 8
Other agents contempt driving rules 1

Total 16/100

little time to react safely.

• Wrong predictions: the MPCC framework works
under the assumption that other vehicles and pedes-
trians have constant velocities. This assumption does
not hold in every situation, which may cause failures.

• Small obstacles: Small obstacles, such as children
and bicycles, are not always easily perceived by the
VG. Furthermore, they are not frequently encoun-
tered by the AV, which makes it more challenging
to properly learn about these cases during training.
Therefore, our system was not fully robust in avoiding
collisions with small obstacles.

• Other agents contempt driving rules: in some
cases, other agents, such as vehicles or pedestrians,
do not respect the driving rules. Other vehicles may
ignore red lights or pedestrians may cross the street
in places where they are not allowed to, inducing
collisions with our system.

Small obstacles and unusual situations were the two
most frequent types of failures. Both cases occurred, in
large part, due to the limited number of episodes during
which the policy was trained. More training time or data
augmentation techniques would largely help to decrease
the frequency of these failures.

The rest of the failure cases did not affect the perfor-
mance of the AV to a great extent, as they happened once
each. However, the proposed framework could be extended
to reduce these types of collisions. The failure episodes
due to limited FoV can be solved by, for instance, by in-
corporating 360◦ visual information, allowing the policy
to reason about the surrounding environment completely.
Secondly, failures due to wrong predictions can be solved
with a high-fidelity prediction model (Brito et al., 2020)
reasoning about interaction and environment constraints.
Lastly, in the cases where other agents contempt driving
rules, the local planner’s safety bounds can be increased;
moreover, more training time can help make the VG be
more robust.

6. CONCLUSION

In this paper we presented a framework, Social-MPCC,
that combines an optimization-based control method (MPCC)

with a learning-based method (iDAgger) for learning and
executing safe, human-like, driving behaviors. Learning
human-like driving behaviors is a desired feature for AVs,
as they produce trust in other human agents and facili-
tate collision avoidance by acting predictably. To achieve
this, the forward velocity reference of a local trajectory
planner is modified in real time by a Visual Guidance
system that learns, from humans, to control this variable
using first-person view images of a vehicle. The learning
method follows an Interactive Imitation Learning training
procedure that enables obtaining well-performing policies
in only two hours of human training time, as opposed to
other methods in the literature that require 100–200× more
human time.

The method was experimentally validated in a real-
istic simulator. Qualitative results show the capacity of
the method to successfully encode human-like driving be-
haviors in the MPCC. Quantitative results compare the
performance of Social-MPCC against baselines that are
optimization-based (i.e., MPCC) or learning-based only
(i.e., end-to-end iDAgger). Social-MPCC substantially im-
proved the performance of MPCC, both in terms of number
of collisions and deadlocks. Furthermore, after two hours
of interactive training, the proposed method showed to
be superior to the end-to-end learning method. Finally,
Social-MPCC achieved real-time performance, which allows
it to be implemented on a real platform.

Future works can extend Social-MPCC to control a
larger family of high-level control variables of the MPCC
with the Visual Guidance. For instance, way points could
be locally modified to enforce specific behaviors. Further-
more, modifying the weights in the MPCC’s cost function
could also be employed for this purpose. Finally, the pro-
posed framework could also be extended with other Inter-
active Learning techniques: for example, corrective advice
could be used to teach behaviors that may be challenging
to demonstrate (Pérez-Dattari et al., 2020).

Acknowledgments

This work was supported by the Amsterdam Institute
for Advanced Metropolitan Solutions and the Netherlands
Organisation for Scientific Research (NWO) domain Ap-
plied Sciences with projects Veni 15916, FlexCRAFT P17-
01 and NWA.1292.19.298.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning
on heterogeneous systems. URL: https://www.tensorflow.org/.
software available from tensorflow.org.

11

https://www.tensorflow.org/

Ablett, T., Marić, F., Kelly, J., 2020. Fighting failures with fire:
Failure identification to reduce expert burden in intervention-based
learning. arXiv preprint arXiv:2007.00245 .

Abramson, J., Ahuja, A., Barr, I., Brussee, A., Carnevale, F., Cassin,
M., Chhaparia, R., Clark, S., Damoc, B., Dudzik, A., et al., 2020.
Imitating interactive intelligence. arXiv preprint arXiv:2012.05672
.

Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T., 2014. Power to
the people: The role of humans in interactive machine learning.
Ai Magazine 35, 105–120.

Argall, B.D., Chernova, S., Veloso, M., Browning, B., 2009. A survey
of robot learning from demonstration. Robotics and autonomous
systems 57, 469–483.

Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation.
IEEE transactions on pattern analysis and machine intelligence
39, 2481–2495.

Baker, C.R., Dolan, J.M., 2008. Traffic interaction in the urban
challenge: Putting boss on its best behavior. 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS
, 1752–1758doi:10.1109/IROS.2008.4651211.

Berg, B., Brito, B., Alonso-Mora, J., Alirezaei, M., 2021. Curva-
ture Aware Motion Planning with Closed-Loop Rapidly-exploring
Random Trees, in: 2021 IEEE Intelligent Vehicles Symposium
(IV).

Bishop, C.M., 2006. Pattern recognition. Machine learning 128.
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B.,

Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.,
2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 .

Brito, B., Floor, B., Ferranti, L., Alonso-Mora, J., 2019. Model
predictive contouring control for collision avoidance in unstructured
dynamic environments. IEEE Robotics and Automation Letters 4,
4459–4466.

Brito, B., Zhu, H., Pan, W., Alonso-Mora, J., 2020. Social-vrnn: One-
shot multi-modal trajectory prediction for interacting pedestrians.
Conference on Robot Learning .

Cai, P., Luo, Y., Hsu, D., Lee, W.S., 2021. Hyp-despot: A hybrid
parallel algorithm for online planning under uncertainty. The
International Journal of Robotics Research 40, 558–573.

Celemin, C., Ruiz-del Solar, J., 2019. An interactive framework for
learning continuous actions policies based on corrective feedback.
Journal of Intelligent & Robotic Systems 95, 77–97.

Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.,
2017a. Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. IEEE
transactions on pattern analysis and machine intelligence 40, 834–
848.

Chen, Y.F., Everett, M., Liu, M., How, J.P., 2017b. Socially
aware motion planning with deep reinforcement learning, in: 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1343–1350. doi:10.1109/IROS.2017.8202312.

Chernova, S., Veloso, M., 2008. Learning equivalent action choices
from demonstration, in: 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE. pp. 1216–1221.

Chernova, S., Veloso, M., 2009. Interactive policy learning through
confidence-based autonomy. Journal of Artificial Intelligence Re-
search 34, 1–25.

Chisari, E., Welschehold, T., Boedecker, J., Burgard, W., Valada, A.,
2022. Correct me if i am wrong: Interactive learning for robotic
manipulation. IEEE Robotics and Automation Letters .

Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei,
D., 2017. Deep reinforcement learning from human preferences.
arXiv preprint arXiv:1706.03741 .

Codevilla, F., Santana, E., López, A.M., Gaidon, A., 2019. Explor-
ing the limitations of behavior cloning for autonomous driving,
in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9329–9338.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. Im-
ageNet: A Large-Scale Hierarchical Image Database, in: CVPR09.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V., 2017.

CARLA: An open urban driving simulator, in: Proceedings of the
1st Annual Conference on Robot Learning, pp. 1–16.

Everett, M., Chen, Y.F., How, J.P., 2021. Collision avoidance in
pedestrian-rich environments with deep reinforcement learning.
IEEE Access 9, 10357–10377. doi:10.1109/ACCESS.2021.3050338.

Fan, T., Long, P., Liu, W., Pan, J., . Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios. The International Journal of Robotics Research .

Ferranti, L., Brito, B., Pool, E., Zheng, Y., Ensing, R.M., Happee,
R., Shyrokau, B., Kooij, J., Alonso-Mora, J., Gavrila, D.M., 2019.
SafeVRU: A Research Platform for the Interaction of Self-Driving
Vehicles with Vulnerable Road Users. 2019 IEEE Intelligent Vehi-
cles Symposium .

Goecks, V.G., Gremillion, G.M., Lawhern, V.J., Valasek, J., Way-
towich, N.R., 2019. Efficiently combining human demonstrations
and interventions for safe training of autonomous systems in real-
time, in: Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 2462–2470.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep learning. MIT
press.

Hausknecht, M., Stone, P., 2015. Deep recurrent q-learning for
partially observable mdps, in: 2015 aaai fall symposium series.

Ho, J., Ermon, S., 2016. Generative adversarial imitation learning.
Advances in neural information processing systems 29, 4565–4573.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory.
Neural computation 9, 1735–1780.

Huang, J., Xie, S., Sun, J., Ma, Q., Liu, C., Shi, J., Lin, D., Zhou,
B., 2021. Learning a decision module by imitating driver’s control
behaviors. arXiv:1912.00191.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., Abbeel, P., 2017.
Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284 .

Hubmann, C., Becker, M., Althoff, D., Lenz, D., Stiller, C., 2017.
Decision making for autonomous driving considering interaction
and uncertain prediction of surrounding vehicles, in: 2017 IEEE
Intelligent Vehicles Symposium (IV), pp. 1671–1678. doi:10.1109/
IVS.2017.7995949.

Kelly, M., Sidrane, C., Driggs-Campbell, K., Kochenderfer, M.J., 2019.
Hg-dagger: Interactive imitation learning with human experts,
in: 2019 International Conference on Robotics and Automation
(ICRA), IEEE. pp. 8077–8083.

Knox, W.B., Stone, P., 2009. Interactively shaping agents via human
reinforcement: The tamer framework, in: Proceedings of the fifth
international conference on Knowledge capture, pp. 9–16.

Kolekar, S., de Winter, J., Abbink, D., 2020. Human-like driving
behaviour emerges from a risk-based driver model. Nature com-
munications 11, 1–13.

Kulhánek, J., Derner, E., Babuška, R., 2020. Visual navigation in real-
world indoor environments using end-to-end deep reinforcement
learning. arXiv:2010.10903.

Laskey, M., Chuck, C., Lee, J., Mahler, J., Krishnan, S., Jamieson,
K., Dragan, A., Goldberg, K., 2017. Comparing human-centric
and robot-centric sampling for robot deep learning from demon-
strations, in: 2017 IEEE International Conference on Robotics and
Automation (ICRA), IEEE. pp. 358–365.

Maas, A.L., Hannun, A.Y., Ng, A.Y., et al., 2013. Rectifier nonlin-
earities improve neural network acoustic models, in: Proc. icml,
Citeseer. p. 3.

Mandlekar, A., Xu, D., Mart́ın-Mart́ın, R., Zhu, Y., Fei-Fei, L.,
Savarese, S., 2020. Human-in-the-loop imitation learning using
remote teleoperation. arXiv preprint arXiv:2012.06733 .

Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N.,
Terzopoulos, D., 2021. Image segmentation using deep learning:
A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence .

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters,
J., 2018. An algorithmic perspective on imitation learning. arXiv
preprint arXiv:1811.06711 .

Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E., 2016. A
survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Transactions on intelligent vehicles 1, 33–55.

12

http://dx.doi.org/10.1109/IROS.2008.4651211
http://dx.doi.org/10.1109/IROS.2017.8202312
http://dx.doi.org/10.1109/ACCESS.2021.3050338
http://arxiv.org/abs/1912.00191
http://dx.doi.org/10.1109/IVS.2017.7995949
http://dx.doi.org/10.1109/IVS.2017.7995949
http://arxiv.org/abs/2010.10903

Pérez-Dattari, R., Celemin, C., Franzese, G., Ruiz-del Solar, J.,
Kober, J., 2020. Interactive learning of temporal features for
control: Shaping policies and state representations from human
feedback. IEEE Robotics & Automation Magazine 27, 46–54.

Prakash, A., Behl, A., Ohn-Bar, E., Chitta, K., Geiger, A., 2020.
Exploring data aggregation in policy learning for vision-based
urban autonomous driving, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp.
11763–11773.

Qiao, Z., Schneider, J., Dolan, J.M., 2020. Behavior planning at
urban intersections through hierarchical reinforcement learning.
arXiv:2011.04697.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., Ng, A.Y., et al., 2009. Ros: an open-source robot
operating system, in: ICRA workshop on open source software,
Kobe, Japan. p. 5.

Ross, S., Gordon, G., Bagnell, D., 2011. A reduction of imitation
learning and structured prediction to no-regret online learning, in:
Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, JMLR Workshop and Conference
Proceedings. pp. 627–635.

Schwarting, W., Seyde, T., Gilitschenski, I., Liebenwein, L., Sander,
R., Karaman, S., Rus, D., 2021. Deep latent competition: Learning
to race using visual control policies in latent space. arXiv preprint
arXiv:2102.09812 .

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 .

Song, Y., Scaramuzza, D., 2020. Learning high-level policies for model
predictive control, in: 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 7629–7636. doi:10.
1109/IROS45743.2020.9340823.

Spencer, J., Choudhury, S., Barnes, M., Schmittle, M., Chiang, M.,
Ramadge, P., Srinivasa, S., 2020. Learning from interventions, in:
Robotics: Science and Systems (RSS).

Spencer, J., Choudhury, S., Barnes, M., Schmittle, M., Chiang, M.,
Ramadge, P., Srinivasa, S., 2022. Expert intervention learning.
Autonomous Robots 46, 99–113.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C., 2018. A
survey on deep transfer learning, in: International conference on
artificial neural networks, Springer. pp. 270–279.

Tolani, V., Bansal, S., Faust, A., Tomlin, C., 2021. Visual navigation
among humans with optimal control as a supervisor. IEEE Robotics
and Automation Letters 6, 2288–2295.

Valletta, P., Pérez-Dattari, R., Kober, J., 2021. Imitation learning
with inconsistent demonstrations through uncertainty-based data
manipulation, in: 2021 IEEE International Conference on Robotics
and Automation (ICRA), IEEE. pp. 3655–3661.

Veličković, P., Blundell, C., 2021. Neural algorithmic reasoning. arXiv
preprint arXiv:2105.02761 .

Vitelli, M., Chang, Y., Ye, Y., Wo lczyk, M., Osiński, B., Niendorf, M.,
Grimmett, H., Huang, Q., Jain, A., Ondruska, P., 2021. Safetynet:
Safe planning for real-world self-driving vehicles using machine-
learned policies. arXiv preprint arXiv:2109.13602 .

Waytowich, N.R., Goecks, V.G., Lawhern, V.J., 2018. Cycle-of-
learning for autonomous systems from human interaction. arXiv
preprint arXiv:1808.09572 .

Waytz, A., Heafner, J., Epley, N., 2014. The mind in the machine: An-
thropomorphism increases trust in an autonomous vehicle. Journal
of Experimental Social Psychology 52, 113–117.

Zamfirache, I.A., Precup, R.E., Roman, R.C., Petriu, E.M., 2022.
Reinforcement learning-based control using q-learning and gravita-
tional search algorithm with experimental validation on a nonlinear
servo system. Information Sciences 583, 99–120.

Zanelli, A., Domahidi, A., Jerez, J., Morari, M., 2020. Forces nlp: an
efficient implementation of interior-point methods for multistage
nonlinear nonconvex programs. International Journal of Control
93, 13–29.

Zhan, W., Sun, L., Wang, D., Shi, H., Clausse, A., Naumann, M.,
Kummerle, J., Konigshof, H., Stiller, C., de La Fortelle, A., et al.,
2019. Interaction dataset: An international, adversarial and cooper-
ative motion dataset in interactive driving scenarios with semantic

maps. arXiv preprint arXiv:1910.03088 .
Zhou, B., Schwarting, W., Rus, D., Alonso-Mora, J., 2018. Joint

multi-policy behavior estimation and receding-horizon trajectory
planning for automated urban driving, in: 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2388–2394.
doi:10.1109/ICRA.2018.8461138.

13

http://arxiv.org/abs/2011.04697
http://dx.doi.org/10.1109/IROS45743.2020.9340823
http://dx.doi.org/10.1109/IROS45743.2020.9340823
http://dx.doi.org/10.1109/ICRA.2018.8461138

	Introduction
	Related Work
	Motion Planning
	Interactive Imitation Learning

	Preliminaries
	Problem Formulation

	METHOD
	Overview
	Visual Guidance
	Interactive Imitation Learning Formulation
	iDAgger

	Local Motion Planner
	Vehicle Model
	Cost Function
	Dynamic Obstacle Avoidance
	Road boundaries
	MPCC Formulation

	Social-MPCC

	RESULTS
	Experimental setup
	Visual Guidance: Deep Neural Network Architecture

	Training procedure
	Qualitative Results
	Quantitative Results
	Discussion
	Analysis Social-MPCC

	CONCLUSION

