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A B S T R A C T   

We analyse the sources of economies and diseconomies of scale in On-Demand Ridepooling (ODRP), disen-
tangling three effects: when demand grows, average costs are reduced due to i) a larger fleet that diminishes 
waiting and walking times (Mohring Effect), and ii) matching users with more similar routes (Better-matching 
Effect). A counter-balance force (Extra-detour Effect), occurs when iii) the number of passengers per vehicle in-
creases and users face longer detours. At low demand levels, there is little sharing and the Mohring effect pre-
vails; as demand grows, more passengers per vehicle push for the Extra-detour Effect to dominate; eventually, 
vehicles run at capacity, and the Better-matching Effect prevails. The last two effects are specific to ODRP as the 
routes are not fixed but adapted online. Our simulations show that considering both users’ and operators’ costs, 
scale economies prevail, and that ODRP with human-driven vehicles and walks allowed has total costs similar to 
door-to-door systems with driverless vehicles.   

1. Introduction 

1.1. On-demand ridepooling systems: potential and challenges 

Transport systems are facing profound transformations worldwide 
thanks to the ability to connect vehicles and large numbers of passengers 
on demand. After almost ten years since their arrival, several studies 
have shown that transportation network companies (TNCs) based on un- 
shared rides (also called ride-hailing or ridesourcing) have increased 
traffic and congestion (Diao et al., 2021; Henao and Marshall, 2019; Roy 
et al., 2020; Tirachini and Gomez-Lobo, 2020; Ward et al., 2021; Wu and 
MacKenzie, 2021). This situation has fostered the study and imple-
mentation of on-demand ridepooling (ODRP) services, in which different 
users simultaneously share a vehicle when their routes are compatible, 
so that congestion and emissions might be reduced (Li et al., 2021; 
Tikoudis et al., 2021), depending on modal substitution. 

ODRP systems have the potential to lower congestion because they 
might reduce the required fleet significantly when compared to the non- 
pooled versions, as shown by several previous studies (Alonso-Mora 
et al., 2017; Fagnant & Kockelman, 2018; Santi et al., 2014). However, 
these analyses are based on comparing the number of vehicles needed to 
serve a fixed demand level, which might be a strong assumption as both 

types of service do not necessarily attract the same number of users. In 
fact, recent studies suggest that the ability of ODRP to reduce congestion 
depends on reaching some advantageous scenarios (Ke et al., 2020; 
Tirachini et al., 2020). Such scenarios should combine an efficient fleet 
operation with an ability to attract a significant number of passengers 
from private cars. To reach those scenarios, some strategic decisions 
arise, such as whether it is efficient to use ODRP in low-demand or 
high-demand markets, or if it should replace and/or complement a 
public transport service over a network. 

These strategic questions require a deeper understanding of the user 
and operator cost structure of ODRP systems, in particular, of the 
mechanisms that introduce economies or diseconomies of scale. How-
ever, this is not an easy task, as the operation of ODRP depends on 
specific algorithms to face the complexity of operating on demand and 
with a large number of feasible ways to match users and vehicles. Which 
algorithm to utilise may yield different strategic results and affect scale 
effects. For instance, a seminal study by Li and Quadrifoglio (2010) 
studies a last-mile service that dispatches vehicles sequentially as soon 
as they get enough users regardless of their destinations. When doing so, 
a potential source of scale economies is not leveraged, namely that a 
greater demand enables grouping together users with closer destinations 
without increasing waiting times significantly. This is the type of issue 
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that we address in this paper. 

1.2. Overview, contributions, and structure of the paper 

In this paper, we extend a state-of-the-art assignment model to 
perform a detailed economic analysis of ODRP systems. In particular, we 
uncover three sources of economies and diseconomies of scale that are 
present simultaneously when operating ODRP, with the objective to 
determine the efficiency of ODRP as a shared-mobility platform for 
urban operations. 

To do so, we consider a real-life network in Manhattan, New York, 
and also an extended version of the so-called single-line model (bor-
rowed from public transport), in order to study sources of economies and 
diseconomies of scale when operating ODRP. The traditional single-line 
model has been extensively used by researchers across decades to 
analyse structural aspects of mass public transport design. The model is 
useful to study the impact of the demand levels, values of time, operator 
costs and other parameters over the mobility system under scrutiny, 
simplifying its spatial distribution. By this means, the demand can be 
represented by a single variable (or a few variables), usually in pas-
sengers per hour, which makes this model quite precise for scale analysis 
(e.g., Fielbaum et al., 2020a; Tirachini and Antoniou, 2020). 

The single-line model is useful for scale analysis, but has a relevant 
limitation when studying on-demand systems: the on-demand nature 
entails that vehicles’ routes should not be defined a priori but adapted to 
the emerging users. Such a feature cannot be captured in a single-line 
model in which there is only one possible route. This limitation might 
influence scale analysis, as one aspect to study is the evolution of the 
routes with scale (in fact, Manik and Molkenthin, 2020, show that a 
linear network artificially favours the performance of ODRP over several 
alternative topologies). We address this limitation by including simu-
lations using a real-life dataset from Manhattan, and by extending the 
single-line model, so that we keep most of its simplifying aspects, but yet 
enabling different routes to be followed depending on the passengers. In 
simple terms, we deploy a grid surrounding the single-line, so that the 
vehicles move within the grid depending on the specific users they are 
serving. 

In our setting, we have another challenge that arises when analysing 
scale for on-demand systems: which fleet to use. Most models that 
simulate ODRP assume a given fleet (as we describe further in Section 
2.1). However, a proper scale analysis requires that the fleet is endog-
enously computed, which is troublesome in ODRP as even with a fixed 
fleet the mathematical problems present great complexity. Here we 
propose a method to compute the fleet together with the assignment 
decisions, so that the number of vehicles responds to the demand. 

We are interested in the potential of ODRP to face some of the most 
relevant challenges faced by urban transport, such as emissions and 
congestion externalities, so the system we study follows rules that 
resemble public transport operations. It is non-profit, and the costs of all 
agents (users and operators) are considered when deciding how to assign 
vehicles to users. The number of vehicles and their routes are decided by 
a central controller aiming to minimise a function that represents total 
costs, where we impose that all users must be served. Moreover, we do 
not impose a door-to-door service, i.e., the system might decide (on- 
demand) pick-up and drop-off points that require some short walks, if 
doing so improves the system’s overall performance. That walking time 
has a valuation for the user that is different from the valuation of in- 
vehicle time. 

Our main contribution is to theoretically disentangle and discuss in 
depth three sources of economies and diseconomies of scale in ODRP 
systems, which are then verified through numerical simulations under 
several different scenarios. These scale effects illustrate the potential 
and obstacles that need to be overcome for ODRP to succeed (for 
instance, Bahrami et al., 2022 show that the profitability of ODRP de-
pends on the presence of scale economies when matching different 
users). Some of these sources of economies and diseconomies of scale are 

specific to ODRP systems, as they depend on how the flexible routes 
followed by the vehicles evolve when the number of passengers grows. 
Furthermore, we propose a way to compute the fleet size in ODRP 
together with the assignment decisions, which can be utilised for other 
types of analysis beyond the objectives of this paper. We also show the 
potential of relaxing the door-to-door scheme when all requests must be 
served, and compare our results with an idealised public transport 
system. 

As discussed exhaustively in Section 3, there are studies that identify 
some of the scale effects of ODRP analysed in the present research 
(Daganzo et al., 2020; Kaddoura and Schlenther, 2021; Ke et al., 2020; 
Lehe et al., 2021, Militão and Tirachini, 2021, Zhang and Nie, 2021), 
although most of these works focus on a single effect. Compared to this 
body of research, our first contribution is the setting of a single frame-
work that allows us to identify and combine the three sources of econ-
omies and diseconomies of scale previously mentioned, in an integrated 
fashion that reveals which of them dominates as the demand grows. 
Second, in our model the fleet is endogenously adjusted to the increasing 
demand levels, which can be compared to previous research efforts that 
usually assumed a fleet size exogenously given. Third, in the application 
of the model, we compare alternative deployment scenarios in order to 
address important policy and service design questions, such as what the 
efficiency gains of allowing walks to pick-up and from drop-off points 
are, compared to door-to-door operation systems (for both 
human-driven and driverless vehicles), and what are the implications of 
alternative operation rules in the cost comparison between ODRP and 
fixed-route public transport. 

The paper is organised as follows. Section 2 revises relevant previous 
studies. Section 3 describes qualitatively and formalises which are the 
most relevant novel sources of scale economies and diseconomies that 
emerge for a transport system that is both on-demand and shared. Sec-
tion 4 shows the numerical simulations, for which we first explain the 
methodological challenges and how we face them. Finally, Section 5 
concludes and proposes some directions for future research. 

2. Related works 

2.1. Fleet sizing in on-demand ridepooling systems 

Deciding the fleet size to be used in an ODRP system is not an easy 
task. Contrary to public transport, the routes cannot be known in 
advance, so the usual techniques dealing with cycle times and desired 
frequencies (see Jara-Díaz and Gschwender, 2003 for a survey on this 
topic) cannot be applied here. Furthermore, the ideas that have been 
used for non-shared on-demand systems, where the crucial question is 
how to chain consecutive trips (such as Vazifeh et al., 2018), are also not 
applicable in this context, because here the trips of different users 
overlap. Such difficulties have been faced with different approaches that 
we now describe. 

The most usual approach in the operations research literature is to 
work with fleets of fixed size. In order to determine which fleet size is 
optimal, or at least gain some intuition about this issue, it is common to 
repeat the same numerical experiments with different fleet sizes, to 
analyse which size adjusts more efficiently to a given demand level, by 
comparing some metrics on, e.g., operating costs, share of unserved 
demand, waiting time and travel time (Alonso-Mora et al., 2017; Levin 
et al., 2017; Lokhandwala and Cai, 2018; Wang et al., 2018). Other 
studies seek the minimal fleet able to meet some exogenous conditions 
on the quality of service. For instance, Daganzo and Ouyang (2019) and 
Martinez and Viegas (2017) require to serve all the demand, although 
the latter also compare to the results obtained with larger fleets. Spieser 
et al. (2014) consider bounds on the number of passengers waiting to be 
served, and Fagnant & Kockelman (2018) aim at fulfilling some pre-
defined waiting times. 

Alternative rules to analyse fleet size in ODRP include the proposals 
of Santos and Xavier (2015), who assume that the number of vehicles 
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has to be proportional to the number of requests, a rule that is obtained 
as a result by Kang and Levin (2021) when following an assignment 
policy that aims at maximising the number of users per vehicle; Pinto 
et al. (2020), who consider an available budget, shared with public 
transport, that has to be respected; and Fielbaum (2020), who makes a 
weighted optimization between users’ and operators’ costs under 
simplifying assumptions that lead to the prediction of exact fleet sizes. 
Cáp and Alonso-Mora (2018) explain that the optimal fleet size also 
considers both types of costs and study the corresponding 
multi-objective problem, proposing a method to compute the Pareto 
front. 

2.2. The single-line model and other simplified networks for the analysis 
of transport systems 

The single line model has been used to identify scale effects in public 
transport. The stream of studies based on the single-line model was 
pioneered by Mohring (1972), who identified one of the main sources of 
scale economies in public transport (now known as the “Mohring Ef-
fect”): more passengers require more buses, which increases the service 
frequency and diminishes waiting times for everybody. His model was 
later extended by Jansson (1980) to consider optimal bus capacities and 
time at stops, where a source of diseconomies of scale emerges, namely 
that an increase in the number of users yields the utilisation of larger 
buses, making users to spend more time waiting for other passengers to 
board and alight (an effect that can be compensated by changing the 
number of doors per vehicle, as analysed by Jara-Díaz and Tirachini, 
2013). Evans and Morrison (1997) discovered yet another source of 
scale economies with an extension of this model: an increase in the 
number of users enables spending more resources in preventing acci-
dents and disruptions in the service. Finally, the inclusion of a crowding 
externality as increasing the value of in-vehicle time savings for public 
transport users has been shown to increase average costs (and therefore 
introduce diseconomies of scale) for large demand levels in a 
single-route model (Tirachini et al., 2010a), however, when the number 
of routes can be optimally decided to minimise total costs, route density 
is increased to reduce crowding and keep total costs down even for large 
demand levels (Tirachini et al., 2010b). Most of these effects have been 
shown to remain valid for single lines when a network is considered 
(Fielbaum et al., 2020a). 

Similar analyses have also been conducted in other networks, 
although finding a suitable simplified representation is already a com-
plex task (see Fielbaum et al., 2017, for an exhaustive discussion on this 
issue). In the context of ODRP, Pimenta et al. (2017) has utilised a 
single-line model to discuss how to operate the system in a reliable way; 
Badia and Jenelius (2021) and Chen and Nie, (2017) consider simplified 
grids to study how to connect ODRP with mass public transport, a 
problem that is studied over an homogeneous circle by Fielbaum (2020); 
while Manik and Molkenthin (2020) compare different simplified to-
pologies to analyse which of them are better served through ODRP. 

2.3. Comparing ridepooling and public transport 

Previous studies have compared whether it is more efficient to utilise 
ODRP instead of fixed-route public transport services in a given area; the 
usual result is that ODRP is more convenient only for low-demand ser-
vices. , as well as Papanikolaou and Basbas (2020), have rested on 
specific functional forms that approximate the operation of ODRP sys-
tems, finding that ODRP should be preferred not only when the demand 
is low but also when the areas to be served are small and trips are short. 
Quadrifoglio and Li (2009) and Li and Quadrifoglio (2010) use contin-
uous approximation models and identify the discomfort of walking as 
another relevant parameter that determines which type of system should 
be preferred. Similarly, Calabrò et al. (2021) use microsimulation to find 
that flexible services are better in rural areas. On the contrary, Bischoff 
et al. (2019) suggest that public transport could be fully replaced by 

ODRP in small or medium cities, while Viergutz and Schmidt (2019) 
conclude that rural areas should use line-based on-demand services 
rather than completely flexible routes. 

It should be noted that all these models assume that the flexible 
systems provide door-to-door service (or station-to-door, when it is 
solving the last-mile problem), which is a common assumption as most 
real-life on-demand systems operate in that way. However, operating 
door-to-door is not mandatory for this type of system. Actually, previous 
research has consistently shown that requesting some users to walk 
either to personalised pick-up and drop-off points (Fielbaum, 2021; 
Fielbaum et al., 2021; Lotze et al., 2022; Wang et al., 2022) or to group 
meeting points (Bischoff et al., 2019; Li et al., 2016, 2018; Stiglic et al., 
2015) can enhance ODRP services significantly. Such ideas are already 
applied in real life: for instance the shared-mobility platform Jetty in 
Mexico City asks passengers to be at specific pick-up points to be able to 
board a shared car or van; and users can monitor the location of the 
vehicle in real-time before boarding (Tirachini et al., 2020). 

3. Sources of scale economies in ODRP 

3.1. Definition of an ODRP cost function 

The problem of operating an ODRP system is defined by an urban 
environment (usually a network represented by a directed graph), a fleet 
of vehicles V, and a demand consisting of a set of requests r ∈ R. Each 
request is characterised by its origin, destination and the time in which 
the request was placed. Crucially, the demand is not known beforehand; 
instead, the system can only take a request into account when it 
emerges, i.e., the time in which the request was placed. A solution to this 
problem is defined by a route Πv for each vehicle v, that serves a set of 
requests Rv, in such a way that the capacity of the vehicle is never 
exceeded, and without violating other constraints that could be defined 
by the operator or service manager (such as hard restrictions on total 
waiting and travel times). 

This general problem can be formulated in many different ways. In 
computational complexity theory, the ODRP problem combines two 
well-known NP-Hard problems, namely Dynamical-Vehicle-Routing- 
Problem and Dial-A-Ride (Yu and Shen, 2020). Therefore, in the past 
years, several methods and heuristics have been proposed to operate 
ODRP systems and determine how to decide routes and assign trip re-
quests to vehicles. When solving the problem, researchers usually follow 
a batch-based approach, in which emerging requests are accumulated 
during some lapse of time before deciding how to assign them all 
together (e.g., Alonso-Mora et al., 2017; Simonetto et al., 2019; Tsao 
et al., 2019), or an event-based approach, where each request is assigned 
as soon as it appears (Fagnant & Kockelman, 2018; Militão and Tira-
chini, 2021; van Engelen et al., 2018). When deciding routes and as-
signments, all of these techniques consider some objective function, i.e., 
there is an implicit or explicit cost function that the model tries to 
minimise. 

What is the economic meaning of the cost function in the transport 
context? As discussed by Jara-Diaz (2007), the product in transport 
systems is defined by the demand being transported, and the problem is 
how to serve it optimally, i.e., how to define the fleet composition, 
routes, and assignments, to minimise a certain cost function. Which el-
ements should be accounted for when defining the ODRP cost function? 
First, we should note that the standard production approach to scale 
economies that is found in other markets (i.e., how do average pro-
duction costs evolve when exogenous output increases) is incomplete to 
analyse passenger transport systems as ODRP. In the public transport 
literature, such realisation came in the 70s, with the pioneering works of 
Mohring (1972), Turvey and Mohring (1975), and Jansson (1979), who 
were among the first to argue that all users’ time costs and efforts should 
be treated as costs on a par with operators’ costs, when analysing the 
optimal design and pricing of public transport systems, because 
considering operators’ costs only leads to suboptimal fleets (e.g., too few 

A. Fielbaum et al.                                                                                                                                                                                                                               



Economics of Transportation 34 (2023) 100313

4

vehicles that increase waiting time, too small vehicles that increase 
passengers’ crowding). The relevance of including both users’ costs and 
operators’ costs in the analysis of public transport provision has been 
subsequently exposed by many studies (see reviews by Jara-Díaz and 
Gschwender, 2003; Hörcher and Tirachini, 2021). In what follows, we 
adopt this paradigm of total cost functions - including users and 
operators-for the analysis of ODRP systems. 

Operator costs are defined by capital and operating costs (Delle Site 
and Filippi, 1998; Jara-Díaz et al., 2017), which depend namely on the 
fleet composition (number of vehicles B [veh] and their size K [pax/-
veh]), and their usage (defined by the vehicles-hour-travelled VHT or 
the vehicles-kilometres-travelled VKT), respectively. User costs are more 
difficult to define, as they aim to capture all the subjective aspects of 
users’ experience. User costs should at least consider the average times 
involved in the different stages of the transport process: waiting time tw 
[min], walking time ta [min], and in-vehicle time tv [min]. Other aspects 
that can be included, but are disregarded in this paper, are the unreli-
ability of the system, how comfortable it is, or the eventual (and unde-
sirable) presence of transfers.1 Putting everything together, the cost 
function can be written as: 

cost = cO(B,K) + cU(tw, ta, tv) (1)  

Where cO and cU stand for operators’ and users’ costs, respectively. A 
usual approach (similar to what we do when running simulations in 
Section 4) is to assume these functions as cO = (cO1 +cO2K)B and cU =

pwtw + pata + pvtv, where cO1, cO2 are operator cost parameters that 
translate everything into the same monetary currency, and pw, pa and pv 
are the value of waiting, access and in-vehicle time, respectively. The 
resulting users and operators costs are not exogenous, as they are 
endogenously obtained when minimising the cost function given by Eq. 
(1). For instance, when deciding which vehicle to assign to a particular 
request, operating costs as well as waiting and in-vehicle time costs need 
to be considered. Investigating scale economies in these systems refers 
precisely to all the sources of costs in Eq. (1). Overall scale economies 
means that the average total costs decrease as the number of users in-
creases, and this analysis can be disentangled to analyse what happens 
with each component of the cost function when the demand grows. 

As discussed by Basso and Jara-Díaz (2006), scale analysis in trans-
port systems is a complex task because the demand has a spatial 
dimension that cannot be aggregated through simplified indices such as 
Passenger-Kilometres. Our analysis should be interpreted as a ray anal-
ysis (Baumol, 1986), i.e., the demand grows proportionally keeping the 
spatial distribution constant. This implies that the demand (i.e., the 
product) can be described by a single variable Y [pax/hour]. When we 
run numerical simulations (Section 4), such a ray analysis is achieved 
first through the utilisation of (an expanded version of) the single-line 
model, and then via selecting an increasing number of random re-
quests from a real-life dataset in Manhattan. It is worth noting that when 
demand grows, its distribution might actually change, so that the scale 
analysis done here should be complemented with the analysis of econ-
omies of scope (Jara-Diaz, 2007). Moreover, the on-demand nature of 
ODRP increases the difficulty of the study of scale economies, as the 
traditional techniques presume that the decisions (here the fleet size and 
their routes) are taken optimally, but doing so might be unfeasible when 
the demand is not known beforehand, which is why we rely on a thor-
ough set of simulations in Section 4 to verify and compare the different 
scale effects introduced later in this section. 

We now propose and explain three sources of scale economies 
dealing with users, which will be studied numerically in Section 4. Let us 
denote by Y the number of users per hour in the system, and by ρ [pax/ 
veh] the average load -or occupancy rate-of the vehicles (note that, by 

definition, it must hold that ρ ≤ K), which refers to the average number 
of passengers on board of a vehicle. As the number of vehicles and their 
operation is decided optimally,2 the variables B and ρ should respond 
endogenously to the demand, i.e., B = B(Y),ρ = ρ(Y). The fleet size and 
the occupancy of vehicles critically influence users’ experience and 
satisfaction, meaning that th(Y) = th(B(Y), ρ(Y),Y) for h = w, a, v. We 
now study the effect of each of these variables on waiting, access, and in- 
vehicle times. 

3.2. The extra-detour effect 

When more users enter an ODRP system, it becomes usually possible 
to serve more of them simultaneously with the same vehicle, even if 
there are restrictions on the total waiting or travel times.3 Pooling users 
in shared rides is often optimal, as fewer vehicles are required compared 
to an alternative with less sharing. Formally speaking, this means that 
ρ′

(Y) > 0. The Extra-detour effect is a source of scale diseconomies 
for users, defined as the degradation in the quality of service due 
the extra detours induced by the increase in the average number of 
passengers per vehicle. Intuitively, as the vehicle routes are not 
defined a priori but adapted to the specific users being served, the 
quality of service perceived by the users is sensitive to route choice. 
When the vehicles are more shared, this increases the detours required 
by the system (Militão and Tirachini, 2021a), which in turn increases 
waiting times. Moreover, the chance of walking instead of having a 
door-to-door service increases as well, because the time savings from 
walking are larger when more other passengers are affected. The 
Extra-detour effect can be expressed mathematically as4: 

∂th

∂ρ for h=w, a, v (2) 

The Extra-detour effect is illustrated in Fig. 1, where we show how 
the blue passenger increases all the components of her travel time when 
the vehicle serves a new user (red). The Extra-detour effect can get 
exhausted when vehicles run at capacity (or near capacity). 

As discussed by Fielbaum and Alonso-Mora (2020), the fact that 
routes are not known beforehand, but depend on the travellers, is spe-
cific to mobility providers that are both shared (otherwise vehicles 
follow shortest paths) and on-demand (otherwise vehicles follow fixed 
routes). Therefore, this source of scale diseconomies is specific to ODRP 
systems. Nevertheless, the Extra-detour effect can be interpreted as 
similar to a well-known fact in public transport, namely that new users 
increase the vehicle occupancy rate, which in turn increases the time 
spent at stops waiting for boarding and alighting passengers. 

It is noteworthy that the Extra-detour effect can affect other service 
attributes, besides tw, ta and tv: 

● Fielbaum and Alonso-Mora (2020) identify two types of unreli-
ability in ODRP: The “one-time unreliability”, defined as changes 
that take place while a trip is executed due to emerging requests, and 

1 For the case of public transport, van Lierop et al. (2018) provide a review on 
the factors considered by users when evaluating their experience. 

2 Or following some heuristic aiming for optimal decisions. We note that for 
this analysis, we assume K to be exogenous, and we show in Section 4 that the 
analysis remains valid if K was also optimised.  

3 This can be formalised through the so-called shareability networks, that 
measure how many requests can be combined together. As shown by Santi et al. 
(2014), and Tachet et al. (2017), a greater number of travellers entails a larger 
shareability.  

4 Note that there might be specific circumstances in which a vehicle’s load 
can increase without increasing service times (for instance, starting from any 
base situation, and duplicating the number of users for all those requests that 
have low waiting times). Eqs. (2)–(4) are valid when the demand grows without 
changing the spatial distribution. For a thorough discussion about the meth-
odological challenges of studying scale economies in transport systems when 
the network and/or spatial distribution of the demand can be changed, see 
Basso and Jara-Díaz (2006). 
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the “daily unreliability”, that refers to facing different conditions 
each time a trip is repeated. Both types of unreliability worsen when 
vehicles are more loaded, i.e., the Extra-detour Effect increases un-
reliability as well. This is not a minor issue: for instance, Alonso--
González et al. (2020) have estimated the value of reliability (that 
refers to the daily unreliability discussed above) to be approximately 
half of the value of time.  

● Sharing the vehicle with more users can be uncomfortable by itself, 
as studied by Ho et al. (2018), König and Grippenkoven (2020), and 
Lavieri and Bhat (2019), who propose the so-called “willingness to 
share” to study the difference in comfort between travelling alone or 
with other users. Note that this effect only occurs when vehicles start 
to increase their number of passengers. The willingness or unwill-
ingness to share a ride is related to an increase in crowding, i.e., the 
discomfort perceived by passengers when having to share a limited 
space (a vehicle or a station) with a large amount of passengers, 
which has been thoroughly studied in the public transport literature, 
as surveyed by Tirachini et al. (2013). 

Although the Extra-detour effect is undesirable for passengers, there 
is one positive consequence of the fact that ρ′

(Y) > 0 from the operators’ 
standpoint: namely, the number of vehicles per hundred users di-
minishes thanks to an increase in vehicle usage. This source of scale 
economies is usual in shared systems (Fielbaum et al., 2020a). 

3.3. The Better-matching effect 

Some papers that analyse ODRP have reported that, when the de-
mand is large enough, it becomes possible (and thus optimal) to form 
more efficient groups of users (Daganzo et al., 2020; Ke et al., 2020; Lehe 
et al., 2021, Zhang and Nie, 2021). This is an intuitive result, as a larger 
demand implies that there are more feasible requests that can be 
matched together. The Better-matching effect is thus defined as the 
ability to create groups whose routes are more compatible with 
each other when the number of passengers increases, thanks to a 
larger pool of requests to choose from. Formally: 

∂th

∂Y
≤ 0 for h = w, a, v (3) 

The Better-matching effect is illustrated in Fig. 2, where users 1 and 2 
are first grouped together; when new passengers emerge, they are 
separated and matched with other users such that the resulting routes 
get more efficient. 

The Better-matching effect also emerges thanks to the flexibility of 
the routes, i.e., it is specific to ODRP systems. However, it is similar to 
the increase in “directness” in public transport systems reported by 
Fielbaum et al. (2020a), who argue that an increased number of pas-
sengers enables the definition of lines that require fewer detours because 

more passengers share the same origins and destinations. 
This effect also constitutes a source of scale economies for operators, 

as reducing detours also implies a reduction in VHT and VKT. The 
Better-matching effect is more evident when the assignment is done by 
batches of users (see Section 3.1), as in that case groups are formed all at 
once; however, it is also present under event-based approaches, as in 
that case the groups get formed sequentially as the individual users are 
assigned (for instance, in the example shown in Fig. 2, it is not relevant if 
the assignments were decided all together or one-by-one). 

3.4. The Mohring effect 

In public transport, the Mohring effect refers to the reduced waiting 
times that result from an increase in the optimal fleet size as a response 
to a greater demand (Mohring, 1972). Similar effects have been found 
for non-shared modes, such as taxis (Arnott, 1996) and ride-hailing 
(Castillo et al., 2017); recent papers by Kaddoura and Schlenther 
(2021) and Lee et al. (2021) have also found an analogous phenomenon 
in ODRP. Mathematically, this is represented by noting the obvious fact 

Fig. 1. Example of the Extra-detour effect. The number of passengers is low in the top row, so users do not share the vehicle, and the blue passenger faces little 
waiting time and no detour. When the demand grows (bottom row), a new red co-traveller appears close to her, which increases her waiting time, requires her to 
walk (marked with a dotted arrow), and implies a detour, degrading her perceived quality of service. 

Fig. 2. Example of the Better-matching Effect. Both in the top row (low de-
mand) and in the bottom row (high demand) we exhibit groups of size two. In 
the top row, the red vehicle is instructed to serve passengers 1 and 2, which are 
also marked with a red color. When the demand grows (bottom row), new 
passengers 3 and 4 appear, allowing the system to form more efficient groups. 
User 1 is now grouped with user 3 and served with a brown vehicle. Users 2 and 
4 are grouped together to be served by a blue vehicle. The color of the pas-
sengers marks which vehicle serves them. Total delay decreases for the two 
users that remain from the top row, improving their perceived quality 
of service. 
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that B′

(Y) > 0 (more users require more vehicles), and that: 

∂th

∂B
≤ 0 for h = w, a (4) 

Note that Eq. (4) includes walking (access) as well as waiting. This is 
because a larger fleet implies that vehicles are denser in space, hence 
shorter walks are required (when the system does not offer a door-to- 
door service), as also analysed in the case of public transport (Fiel-
baum et al., 2020b) and bike-sharing systems (Jara-Díaz et al., 2022). In 
the context of public transport, this is described as the “spatial coun-
terpart of the Mohring Effect” by Fielbaum et al. (2020b). 

3.5. Combination of the three effects 

We have described three sources of scale effects: two positive ones 
(Better-matching and Mohring) and one negative (Extra-detour) in the 
case of users’ costs. The Better-matching effect is induced directly by the 
greater demand, which enables the creation of more efficient groups, the 
Mohring effect is indirectly induced by a larger fleet, which diminishes 
waiting and walking times, whereas the Extra-detour effect is derived 
indirectly from the larger passenger occupancy rate of the vehicles, 
which increases detours and degrades the quality of service for some 
passengers. As the three effects might appear at the same time, it is 
uncertain which of them predominates. Formally, ∂CU

∂Y = ∂CU
∂ρ ρ’(Y)+ ∂CU

∂B B’ 

(Y) + ∂CU
∂Y , where the first term is negative and the other two terms are 

positive. For operators, if vehicle size is exogenous, both the Extra- 
detour effect and Better-matching effect reduce average costs, and 
therefore are sources of economies of scale; otherwise, the Extra-detour 
effect can lead to larger vehicles which increases operators costs as per 
Eq. (1). In Section 4, when running simulations, we identify the rela-
tionship between the scale three effects for different demand levels. 

4. Numerical simulations 

We now run numerical simulations of an ODRP system to analyse the 
occurrence of the scale effects discussed above, and to see which of them 
predominates depending on the circumstances. The system we simulate 
admits walks, is non-profit and adapts the fleet to have no rejections. To 
do so, we leverage the assignment method from Fielbaum et al. (2021) 
and Alonso-Mora et al. (2017), by deciding in real-time how many ve-
hicles should be in operation, apart from the vehicle assignment and 
user assignment. In what follows, we discuss how to compute the 
endogenous fleet depending on the demand. 

4.1. Computation of the number of vehicles in the ODRP system 

In order to compute the fleet size together with the assignments 
between vehicles and users, we build upon the ODRP model proposed by 
Fielbaum et al. (2021). Such a model extends the one by Alonso-Mora 
et al. (2017) by optimising the pick-up and drop-off points, which might 
differ from the actual origins and destinations of the users when asking 
them to walk increases overall efficiency. Both models determine how to 
operate a fixed fleet of vehicles to serve the emerging requests. We 
extend these works by computing the fleet endogenously. We first 
explain briefly how the original methods work, and then describe this 
extension. 

The ODRP system operates over a directed graph G = (N,A). Each 
request r = (or, dr, tr) is a triplet, representing the origin, the destination, 
and the time in which the trip is requested. Both the origins and the 
destinations are assumed to be placed over the nodes of the graph. The 
assignment model works using a receding horizon approach, meaning 
that it accumulates the requests that emerge during a fixed amount of 
time δ and assigns them all at once (hence it is batch-based), which 
updates each vehicle’s route. When such an assignment is decided, the 
vehicles follow their updated routes, and the system begins to 

accumulate requests for a time δ again, starting a new iteration. 
Let us focus now on a single iteration, denoting by R the set of re-

quests to be assigned, and by V the current state of the fleet of vehicles. 
Each vehicle v is characterised by its position Pv and the set of requests 
assigned to it Sv (either in the vehicle or waiting for it). The assignment 
between R and V takes place following these three steps:  

● Determine which are the feasible trips. A trip T is defined by a group 
of requests req(T) ⊆ R and a vehicle veh(T), so that T is feasible if the 
requests in req(T) can be transported together by veh(T), respecting 
some bounds on waiting and walking times, and on total delay 
(denoted, respectively, Ωw,Ωa, and Ωv). Such bounds affect users in 
req(T) and also in Sveh(T), whose routes might be updated due to the 
new requests. The delay is defined as the extra time faced by a user 
compared to beginning her trip immediately, with no walking and 
following the shortest path between her origin and destination. Each 
trip T might be served by more than one route so that taking the 
route π imposes a cost to the system given by Eq. (5). The route π is 
defined by the nodes in which the vehicle stops to serve everybody, 
thus it contains implicitly the pick-up and drop-off points for every 
user. 

cost(T, π)=
∑

r∈reqt(T)

CU(T, π)+
∑

r∈Sveh(T)

ΔCU(T, π) + ΔCO(π) (5)  

Where the first term represents the users’ costs for passengers in trip T, 
defined as a weighted sum between waiting, walking, and in-vehicle 
times; the second term represents the extra costs induced to the users 
that were being served by the vehicle prior to this assignment (because 
their waiting and in-vehicle times can increase); and the third term 
expresses the increase in operational costs, that are assumed to be pro-
portional to the route length. The route that offers the minimum cost is 
selected, so that the trip T is characterised by a single figure that we 
denote cost(T). 

It is worth commenting that computing all the feasible trips can be 
computationally expensive, as their amount can increase exponentially 
with the number of requests (note that this increase in the number of 
feasible trips is the mathematical expression of the Better-matching ef-
fect, while the specific appearance of trips with many users represents 
the Extra-detour effect). Such an issue is faced first by making a smart 
search of the feasible trips (using that if vehicle v is able to serve group G, 
then it must be true that v can serve every subset of G as well), and also 
by using a number of heuristics, explained in detail by Fielbaum et al. 
(2021), to compute the sequence in which the users are served and the 
pick-up and drop-off points.  

● Once the set Γ of potential trips is known with their respective costs, 
some of them are selected and constitute the actual assignment. To 
do this, an Integer Linear Programing (ILP) problem defined by Eqs. 
(6)–(8) is solved: 

min
x,z∈{0,1}

∑

T∈Γ
xT cost(T) +

∑

r∈R
pkozr (6)  

s.t. zr +
∑

T:r∈req(T)

xr = 1∀r ∈ R (7)  

∑

T:veh(T)=v

x T ≤ 1∀v ∈ V (8) 

Binary variables xT represent the trips that are going to be executed 
(marked by xT = 1). In the original model we are now describing, that 
operates with a fixed fleet, it is not always possible to serve all the trips 
(the number of vehicles might not be enough), so rejected requests are 
marked by zr = 1. Each rejected request imposes a penalty pko to the 
system, so Eq. (6) is the objective function to be minimised when 
deciding the assignment. Eq. (7) ensures that each request is either 
rejected or belongs to a trip that is going to be executed, while Eq. (8) 
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ensures that each vehicle is assigned to no more than one trip.  

● Finally, a rebalancing step instructs idle vehicles (i.e., those with no 
requests before the assignment and who did not receive anyone here) 
to move to certain areas where more vehicles are needed. In our 
setting, we execute a simple rebalancing step when simulating a 
feeder ODRP system, as explained in Section 4.2.1. We do not 
rebalance vehicles in the other scenarios, as the rebalancing step 
proposed by Alonso-Mora et al. (2017) sends vehicles to the places 
where users have been recently rejected, which does not occur here 
where we impose that everyone must be served. 

In this paper, we extend this model to decide how many vehicles to 
use at the same time as deciding the vehicle and user assignments. To do 
so, we assume that the system begins with no vehicles, and that there are 
some spots in the city (which is a set of nodes M⊂N) where potential 
vehicles are placed. At each iteration (i.e., each time a batch of requests 
is assigned), the fleet of vehicles is composed of two sets: the one 
inherited from the previous iteration, plus a set containing one non- 
activated vehicle per request r ∈ R, that is located in the node in M that is 
closest to its origin or. If a non-activated vehicle is assigned to a group of 
requests, an activation cost cA has to be paid, and the vehicle becomes 
available for the rest of the period of operation without paying the 
activation cost again. The parameter cA includes all the costs that do not 
depend on the distance driven by the vehicle, such as capital costs. This 
is formalised by altering the cost of the trips. Denoting by A(v) = 1 if 
vehicle v is activated (i.e., inherited from a past iteration) and A(v) = 0 if 
not, Eq. (5) is modified to build the new cost function cos tA(v), given by 

cos tA(v)= cost(v)+ cA⋅[1 − A(veh(T))] (9) 

Following Tirachini and Hensher (2011) and Jara-Díaz et al. (2017, 
2020), we assume that both components of operators’ costs grow line-
arly with the capacity of the vehicle. That is, recalling that K is the ca-
pacity of the vehicles, and denoting by cO the proportionality constant 
that defines the costs depending on the routes’ lengths, then: 

cO = cO1 + cO2K, cA = cA1 + cA2K (10) 

As we now have one non-activated vehicle per request, it is always 
feasible to serve everybody. Therefore, we do not longer include vari-
ables zr in the ILP to be solved, removing the second term from Eq. (6), 
and modifying Eq. (7) accordingly to ensure that each request belongs to 
exactly one assigned trip, i.e. 
∑

T:r∈req(T)

xr = 1∀r ∈ R (11) 

The problem is solved using the standard commercial ILP solver 
Gurobi. Finally, we include yet another extension to the base model: we 
assume that a fixed time τ is spent each time the vehicle stops to pick up 
or drop off one or more passengers. We include this fact because it is 
relevant when analysing scale economies, as sometimes the vehicle 
might use a single stop for more than one pick-up/drop-off, saving some 
time. 

4.2. The scenarios 

The analysis of scale economies requires increasing the demand level 
without changing its spatial distribution. We utilise the model described 
in Section 4.1 under two different types of scenarios. The first one is an 
ad-hoc network, namely an extension of the single-line model that has 
proved useful for scale analysis in transport systems in the past (see 
Section 2.2). The second one adapts a real-life database from Manhattan 
for this purpose. 

4.2.1. Extending the single-line model 
The traditional single-line model studies the operational 

characteristics of a public transport system in which the vehicles follow 
a predefined path, so everything is one-dimensional. Specific versions 
are:  

● The circular model, in which the line tours a circuit that presents the 
same average number of users at every point. This model represents a 
line that carries a similar load all along its length.  

● The linear model, in which vehicles travel in both directions along a 
linear corridor between two terminals. A particular case of the linear 
model is the feeder model, in which users board the vehicle across its 
path, and they all alight at the end. This model represents a line that 
goes to some relevant final destination, typically a public transport 
station, to board a high-capacity public transport mode (e.g., rail, 
Bus Rapid Transit). 

In any of these alternatives, the vehicle route is fixed beforehand and 
always the same. We aim to extend this model, keeping most of its 
simplifying assumptions that make it a powerful tool, but allowing for 
online decisions regarding the routes. To do that, we deploy a grid 
surrounding each bus stop, where exact origins and destinations are 
situated. In the traditional model, such a grid can be seen as an under-
lying street pattern that does not need to be explicit because users need 
to walk towards the (fixed) bus stops anyhow. In such a case, walking 
times and distances are assumed exogenous, meaning that the operation 
and optimization of the public transport line are not affected. 

To be precise, we assume that each bus stop belongs to a zone, which 
is an a × b grid, with a, b odd numbers, so that the bus stop is located at 
the centre of the grid. That set of stops represent where the potential 
vehicles for the ODRP system are located (the set M defined above). The 
central streets of the grid are bidirectional, and vehicles tour them at 
velocity v1, whereas the rest of the streets are unidirectional,5 with 
alternate directions and velocity v2, where v2 < v1. Having streets of 
different velocities and directions help to capture that not all routes are 
equally good for the vehicle to follow. The whole network is formed by 
chaining consecutive zones. If there are Z zones, this makes a Z⋅a × b 
grid in the feeder model; in the circular model, the same happens, but 
the last zone is chained with the first one, forming a circular grid. Both 
networks are depicted in Fig. 3. 

Regarding the demand, we want to keep the homogeneity assump-
tions from the single-line model but enabling for more complex routes. A 
constant number of users Y emerge per time unit, and the exact origin is 
random: we first choose the zone with uniform probability; within that 
zone, the central node is chosen with probability p, the rest of the nodes 
located in the central streets with probability pγ, and the nodes out of the 
central streets with probability pγ2. The parameter p is adjusted to make 
the sum of the probabilities within every zone equal to 1, and the 
parameter γ ∈ (0,1) controls how dispersed the demand is within a zone 
(the lower the γ, the more concentrated the demand in the vicinity of the 
bus stop). The destination is computed differently depending on the 
model: in the feeder one, everybody goes to the centre of the final zone, 
whereas in the circular model, the destination zone is located l zones 
ahead, plus a random variable that is obtained rounding a normal dis-
tribution with mean zero and variance σ2; the exact destination is found 
within that zone using the same rules involving p and γ as for the origin. 

As mentioned above, in the feeder model we need to rebalance idle 
vehicles to prevent them from accumulating in the common destination 
of all users: after reaching that node, they are sent towards the central 
node of the first zone (i.e., the one located at the largest distance from 
the shared destination). Such vehicles will not necessarily arrive there 
because they will be considered available in the following iterations, 
meaning that they might receive new passengers before reaching the 

5 In the feeder model, the first and last transversal streets are also bidirec-
tional so that there are no isolated nodes. 
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first zone. 

4.2.2. The Manhattan scenario 
Similar to other studies that have simulated ODRP (e.g., Alonso-Mora 

et al., 2017; Simonetto et al., 2019), we leverage the public database 
generated by the NYC Taxi & Limousine Commission, that contains all 
the taxi trips that are executed in Manhattan. For each trip request, we 
know the number of users, its time, origin, and destination. The graph is 
composed of 4092 nodes and 9453 arcs. We consider 1 h of the operation 
of the system, just after 1 p.m. of January 15th, 2013, which has 10,774 
trip requests. In order to perform scale analysis while keeping the spatial 
distribution of the demand somewhat constant, we repeat the simula-
tions several times, each time increasing the number of requests that are 
considered. To be precise, for every repetition, and before running the 
simulations that represent 1 h of operation, we decide randomly 
whether each request is considered or not. The probability of including a 
request is the same for every request, and this probability increases for 
each repetition. By this means, the set of requests to be assigned is larger 
every time, but their spatial distribution is kept on average, as the re-
quests are selected randomly from the same universe set. 

Here there is no natural candidate for where the vehicles should 
begin their journeys when they are activated (the equivalent to the 
centre of each zone in the single-line model). To face this issue, we 
cluster the network, finding the minimum number of centres such that 
every node in the network can be reached in less than Ωw from at least 
one centre. This problem is solved by an ILP (described in detail by 
Wallar et al., 2018), which leads to 19 centres. Therefore, when a 
request needs to travel from a node x, the corresponding potential 
vehicle will be placed in the centre that is located closest to x. 

4.2.3. Definition of the bounds in the quality of service 
As explained in Section 4.1.1, the assignment procedure in ODRP 

imposes predefined bounds on the quality of service, namely maximum 
waiting (Ωw) and walking (Ωa) times, as well as a maximum total delay6 

(Ωv). Defining such bounds is a relevant issue, as it has relevant impacts 

on the performance of the ODRP system. For instance, if the bounds are 
too tight and users are too spread, then the system might require to 
allocate almost one different vehicle per request, leading to a huge fleet; 
on the other hand, if the bounds are too large (or inexistent), one single 
vehicle might be able to serve all the requests, but offering an awful (and 
unrealistic) quality of service. We will consider two ways in which these 
bounds are defined: 

4.2.3.1. Endogenous bounds. First, we consider a case in which the 
bounds are calculated as a function of the demand, using longer time 
windows when the demand is low. This is done for the single-line model, 
as it mimics what passengers usually face when using public transport: 
when they want to make a trip on a high-demand corridor, they can 
rapidly find a bus (or any alternative mode they are using), and the 
contrary happens in low-demand areas (a similar argument has been 
proposed by Yan et al., 2020 when proposing their dynamic waiting 
strategy). Thus, we define the bounds to replicate this behaviour, by 
means of the classical single-line model by Jansson (1980) and the 
posterior adaptations by Jara-Díaz and Gschwender (2009), described in 
Appendix A.1, where the key variable is the optimal frequency f . The 
bounds are defined as follows:  

● Waiting: The maximum waiting time that can be faced in the public 
transport system occurs when a passenger arrives at the station just 
after a bus leaves, waiting for 1/f (a quantity that decreases with the 
number of passengers). Recalling that when a vehicle is activated, it 
goes from the station to the pick-up point, we need to ensure that 
there is always enough time to wait for such a movement. Denoting 
by t1 the vehicle-time from the station to the corner of the zone’s 

grid, we use Ωw = max
{

1
f , t1

}
.  

● Walking: The maximum amount of walking in the public transport 
systems is t2, defined as the walking time between the station and a 
corner of the zone’s grid, so we use Ωw = t2. When we simulate the 
case in which ODRP offers a door-to-door service, this bound is 
reduced to zero.  

● Delay: There are two sources of delay in public transport with 
respect to the time in the vehicle: walking and waiting. The first one 
should be accounted for twice, at the origin and destination. 

Therefore, we use Ωv = max
{

1
f , t1

}
+ 2t2. 

Fig. 3. Extensions of the single-line model to recreate the network in which the ODRP system operates, replacing either a feeder line (a) or a circular line (b). Origins 
can be placed in any intersection, and the same happens with destinations in the circular model. In both cases, there are 8 zones, each formed by a 3x5 grid. Red dots 
represent the stations in which the ODRP vehicles begin their journeys. Dark black streets are bidirectional and can be toured with a higher speed. The traditional 
single-line model is recovered by considering only the long avenue that connects all the red dots. 

6 Such bounds ensure that users will indeed accept the assignment proposed 
by the system rather than searching for an alternative mode. Moreover, without 
them the algorithmic burden of the problem would be unmanageable, as every 
possible group of users could be feasibly served by any vehicle. 
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4.2.3.2. Exogenous bounds. Defining the bounds as a function of the 
demand volume may have a drawback, namely that the varying bounds 
may interact with the other scale effects that we are analysing. For this 
reason, we also study the case in which the bounds are exogenous, using 
Ωw = 3 minutes, Ωa = 4 minutes, and Ωv = 6 minutes. 

4.3. Results 

We simulate 1 h of operation of the ODRP system, for increasing 
demand levels, in order to identify scale effects. The numeric values of 
the parameters are shown in Table A.1 in the Appendix. All figures in 
this section use a logarithmic scale in the x-axis, because the phenomena 
that we study tend to stabilise when the number of passengers is high, so 
zooming in the lower values helps the analysis. The simulations are run 
for different values of K (the size of the ODRP’s vehicles), including 
vehicles with capacity for 2, 3, 4, and 5 passengers. 

Most results consider the base case in which we assume the avail-
ability of automated vehicles (AV) and walks are allowed. We assume 
that AV differ from human-driven vehicles in the parameters that 
represent operator costs: on the one hand there is a reduction in oper-
ating cost due to savings in driver wages, on the other hand there is an 
increase in capital cost due to the added cost to provide vehicles with 
automation capabilities, which is taken from Tirachini and Antoniou 
(2020). We will assume that the velocity at which vehicles run do not 
depend on such a technology: differences in velocity due to automation 
are still uncertain, as AV might run faster (thanks to better coordination 
among vehicles) or slower (due to safety reasons, particularly in urban 
roads when surrounded by pedestrians, cyclists and human-driven ve-
hicles). Specific assumptions about differences in velocity may have a 
large impact on the results (Tirachini and Antoniou, 2020). 

4.3.1. Time windows adapted endogenously to demand - circular model 
We first describe the results when the time windows Ωw,Ωa,Ωv are 

calculated as a function of the demand. We show the results of the cir-
cular model in Figs. 4–8. Fig. 4a shows a condensed way to describe the 
quality of service of the ODRP system from the users’ point of view: total 
delay, i.e., the extra time faced by them when they use this system 
instead of travelling in a private vehicle. Fig. 4b exhibits the average 
occupancy rate [pax/veh] per vehicle ρ at the end of the simulation, 
which was identified as the crucial factor for the existence of disecon-
omies of scale (the Extra-detour Effect). Total delay includes walking 
time, waiting time, and detour once in the vehicle. Scale effects are 
evident: At the very beginning of the curve, up to around 250 passen-
gers/h, there is a reduction in total delay. However, when the number of 
passengers continues to grow, diseconomies of scale appear as the 
average delay increases to 5 min/passenger for demands up to almost 
1000 passengers/h. Remarkably, the appearance of diseconomies of 
scale coincides exactly with the moment in which ρ starts to increase 
(before that, it slowly decreases, which is explained by the changes in 
the time windows). Then, the average delay is once again reduced, to 
reach around 2 min/passenger for 3000 passengers/h. 

To delve into the curves from Fig. 4 and identify the emergence of the 
three effects described in Section 3, we disentangle the total delay per 
passenger in its three components in Fig. 5: Waiting (a), walking (b), and 
detour (c). Waiting times evolve similarly to total delay. 

Let us begin our analysis after the strong drop at the beginning of the 
graph. The remainings of the curves reflect that the average delay first 

increases and then slowly decreases. Diseconomies of scale emerge when 
Y reaches about 250 passengers/h. Until that point, there is little sharing 
in the system (below 1.3 users per vehicle), because it is difficult to find 
compatible users, implying that most users travel alone.7 When vehicles 
begin to be shared with more people, one of its consequences is that 
vehicles do not go directly to pick up the users but deviate to serve some 
co-travellers, hence increasing waiting times. This effect dominates for 
demands greater than 250 passengers/h. The same phenomenon can be 
seen related to walking and the detour, which also start to increase when 
crossing the same threshold. Noteworthy is that the smaller the vehicle, 
the lower the detour, and that detours can be negative, meaning that the 
distance between the pick-up and drop-off points might be lower than 
between the corresponding origins and destinations (due to walking). 
Therefore, our simulations confirm the Extra-detour effect as a relevant 
source of diseconomies of scale in ODRP systems: an increase in the 
number of users implies that the vehicles will be shared by more 
passengers, which increases average travelling times. 

The Extra-detour Effect eventually gets exhausted. At some point, the 
vehicles no longer increase their load (when they are running at ca-
pacity, considering their current passengers and the ones that are 
waiting to be picked up). When this happens, Fig. 5a and b reveal that 
waiting and walking times begin to diminish. That is to say, the two 
sources of scale economies described in Section 3 begin to dominate: the 
Mohring Effect and the Better-matching Effect. We can synthesise these 
scale effects by stating that two relevant sources of scale economies 
in ODRP are that the increase in the number of users leads to 1) a 
larger fleet, which reduces waiting and walking times, similar to 
the Mohring Effect in fixed-route public transport, and 2) matching 
users whose routes are more compatible. 

The quick drop at the beginning of the curve is explained by the 
Mohring Effect, but only regarding waiting times because for such a 
demand there is almost no walking. As vehicles’ occupancy rate does not 
increase yet, neither the Extra-detour nor the Better-matching Effects 
operate significantly. Actually, the average occupancy rate decreases 
slightly, due to the decrease in Ωw and Ωv, which makes the Mohring 
Effect even stronger as more vehicles are needed. 

It is worth commenting that the Mohring Effect is usually more 
important at low demands because when the number of vehicles is 
already large, the marginal impact of an additional vehicle is low in 
reducing waiting times. Then, the drop in average times at the end of the 
curve is mainly driven by the Better-matching Effect. 

The fact that there is no walking at all when the demand is very low is 
explained because there is little sharing and it is difficult for vehicles to 
chain consecutive trips. Thus, many times the only user involved when 
deciding a vehicle’s route is the one being transported, and for her it is 
more comfortable to have a door-to-door service (as usual in the liter-
ature and shown in Table A1 in the Appendix, we assume that pa > pv). 
The absence of walks also explains why the detour is longer at the 
beginning of the curves. This suggests that if pa was low (but greater 
than zero), the Mohring Effect would affect walking times for low de-
mand volumes as well. Note that the average walking time increases 
slightly before the large jump at 250 passengers/h, which is explained 
by the changes in the time windows, as sometimes such short walks can 
enable a group that would be otherwise infeasible. 

The analysis above confirms the three sources of scale discussed in 
this paper. However, the varying bounds on the quality of service do 
play a role in the analysis, which is why in Section 4.2.3 we analyse the 

7 This occurs in some real-life scenarios. In several towns around Munich, 
Germany, during some specific time windows in which the demand is very low 
(between 17:30 and 5:45 in working days), the public transport agency sends 
private taxis to fulfil it. This result has also been reported by Daganzo et al. 
(2020) when comparing three different demand levels with vehicles of capacity 
2 pax/veh.See https://www.mvv-muenchen.de/mobilitaetsangebote/bedarfsv 
erkehr/mvv-ruftaxi/index.html (Accessed: 10/08/2022). 
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case with fixed bounds, where we show that the qualitative conclusions 
remain valid. 

The comparison among different vehicle sizes is also informative. 

The smaller the vehicle, the lower the number of passengers per vehicle, 
and thus the detour. Walking times are not affected significantly by the 
vehicle capacity adopted. On the other hand, waiting times are slightly 

Fig. 4. a) Average total delay faced by the users, and b) Average load per vehicle at the end of the simulation, in the ODRP system for the circular model with 
endogenous time windows, as the number of hourly passengers grows. Different curves represent different vehicles’ sizes. 

Fig. 5. Average waiting time (a), walking time (b) and detour (c), faced by the users of the ODRP system in the circular model with endogenous time windows, as the 
number of hourly passengers grows. Different curves represent different vehicles’ sizes. 

Fig. 6. Fleet size (a) and Vehicle-Hours-Travelled (b), normalised by the number of passengers, as this last quantity grows. Different curves represent different 
vehicles’ sizes. 
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larger for smaller vehicles when the demand lies in the range of 
250–1000 passengers/h. As the fleet size is mostly unaffected by the 
vehicle capacity within that range (see Fig. 6a), it is more likely that the 
assigned vehicle is not immediately available when vehicles are small. 

The evolution of the components of operator costs (depicted in 
Fig. 6) is mostly characterised by scale economies when exceeding the 

threshold in which vehicles start to be shared more intensively; before 
the threshold, it exhibits an irregular pattern in which the randomness of 
the requests play the most relevant role. This is reflected in the fleet size 
(Fig. 6a), which also exhibits scale economies in public transport, and 
too in operating costs (vehicle hours travelled VHT, Fig. 6b). That is to 
say, an operator-related source of scale economies is given by the 

Fig. 7. Average delay (a) and Seats per passenger (b), yielded by the ODRP system in the circular model with endogenous time windows, as the number of hourly 
passengers grows, when the optimal capacity is selected. 

Fig. 8. Average (a) total costs, (b) operator costs and (c) users cost per passenger in the circular model with endogenous time windows, as the number of hourly 
passengers grows, when the optimal capacity is selected. Different curves represent different types of vehicles and whether walks are enabled in ODRP. 
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increase in sharing, which makes the number of vehicles and VHT 
increase less than linearly with the number of users. It is noteworthy 
that using smaller vehicles requires a larger fleet when used at capacity, 
which also increases VHT. Both curves eventually stabilise, meaning 
that this source of scale economies gets exhausted. 

So far, we have exhibited results for a range of vehicle capacities, 
from 2 to 5 passengers/veh. However, the system should utilise vehicle 
sizes that minimise total costs. Our results indicate that the smallest 
vehicles (capacity 2) should be used if Y ≤ 550, and capacity 3 there-
after. Fig. 7 synthesises scale effects for users and operators when the 
capacity is optimised. The delay curve (Fig. 7a) looks almost exactly as 
Fig. 4, meaning that all the scale phenomena discussed above remain 
valid. Fig. 6 implies that both the number of vehicles and VHT still 
exhibit scale economies when the capacity is optimised, but there re-
mains one aspect to be analysed: the number of seats S, defined as the 
product of the number of vehicles and their capacities. Recall that, ac-
cording to Eq. (10), operators’ capital and operating costs depend both 
on the total number of vehicles and on S. The evolution of S when the 
capacity is optimised is shown in Fig. 7b: it is similar to what we 
observed regarding fleet size (first erratic and then scale economies), but 
with a small jump when the optimal capacity switches from 2 to 3 
(around 600 passengers/h in Fig. 7b). We note that in real-life imple-
mentations, the fleet might not be homogeneous, i.e., it is possible to 
have vehicles of different sizes, which would decrease the size of these 
jumps as the average K would approach a continuous function; however, 
optimally routing and operating a heterogenous fleet is quite complex, 
let alone designing it, so this is beyond the scope of this paper. 

In Fig. 8, we synthesise the results by depicting average total costs, 
and also average users and operators costs. We further include two 
alternative scenarios: forbidding walks (i.e., providing door-to-door 
service), and utilising human-driven vehicles instead of AVs, which di-
minishes capital costs but includes the drivers’ wages. Fig. 8a shows the 
average cost per user: in all three scenarios, we observe the same situ-
ation, namely, no clear trends for very low demands and economies of 
scale after a certain demand threshold is reached. This implies that the 
sources of diseconomies of scale that we identified for the users get 
outweighed by the sources of economies of scale for the operators, 
leading to a global situation of economies of scale that eventually 
get exhausted. Note that having overall economies of scale means that 
the sources of diseconomies of scale (crucially the Extra-detour Effect) 
can be compensated through pricing. Some relevant insights can be 
obtained from the comparison between the different scenarios and 
vehicle technologies:  

● Using AVs reduces the total cost to a considerable extent. This fits 
intuition, as having drivers for each small vehicle can increase total 
costs significantly (Bösch et al., 2018).  

● In general, operator costs (Fig. 8b) are larger than user costs (Fig. 8c) 
and the shape of the total cost curves is mostly driven by the shape of 
the operator cost curves. In Fig. 8 c, sharing a vehicle significantly 
increases users’ cost due to extra waiting, walking (when admitted), 
and detours. Users would prefer not to walk, but because walks are 
short, the advantage of a door-to-door service is much smaller than 
what is gained in terms of operators’ costs when walks are admitted.  

● When the number of users is large, enabling walks can be as 
important as changing the vehicle technology: both non-solid curves 
exhibit similar values of average total cost in Fig. 8. In fact, an 
ODRP system with human-driven vehicles that enables walking 
has a lower total cost than a system with AVs without walks, for 
some demand levels. This is a remarkable finding regarding the 
value of designing an ODRP system with short walks.  

● On the other hand, as there is little walking when the number of users 
is low (the system works similar to a private door-to-door service), 
for demands below 250 passengers/h the corresponding impact of 
enabling walks is negligible.  

● The curve in which walking is not allowed exhibits returns that are 
almost constant to scale (similar to the findings by Militão and 
Tirachini, 2021b). Therefore, admitting walks happens to be 
crucial to trigger scale effects. 

4.3.2. Time windows adapted endogenously to demand - feeder model 
There is an emerging research trend that studies the potential of 

ODRP services to help solve the so-called “last-mile problem”, i.e., as a 
feeder that connects the main public transport stations with the specific 
origins (or destinations) of the users (e.g., Bürstlein et al., 2021; Chen 
et al., 2020; Fielbaum, 2020; Kim and Schonfeld, 2014; Leffler et al., 
2021; Ma et al., 2019; Wen et al., 2018). For the ODRP system, the main 
difference with respect to the circular model is that everybody shares 
one extreme of the trip, which means that this model can also represent 
the case in which there is a very attractive destination, such as the city 
centre. In our simulations, all users are travelling to the same destination 
(for instance, to take a second vehicle that does not affect the ODRP 
operation). Therefore, compatible routes are much easier to find. The 
only requirement is that when a vehicle is following a route, new pas-
sengers have to be located close to that route. This demand pattern has a 
significant effect in the simulations: for the same number of users, the 
number of feasible trips is multiplied by about twenty compared to the 
circular model. This increases the computational burden significantly, 
which is why here we simulate only up to capacities equal to four. 

There is yet another relevant difference related to idle capacity. As 
users move all in the same direction, and the network is no longer cir-
cular, the vehicles must actively return in order to find some new pas-
sengers. Recall that this is executed through a rebalancing step: idle 
vehicles are sent towards the other extreme of the network, but they 
might not arrive there because they are still considered available for the 
emerging users. 

The results of the simulation are depicted in Fig. 9, considering the 
base model (AVs and enabling walks). Fig. 9a condenses the information 
regarding users’ costs by displaying the average delay, which shows the 
same trends as observed in the circular model, verifying the presence of 
the three sources of scale economies discussed above. Fig. 9b shows the 
average number of passengers per vehicle (excluding vehicles being 
rebalanced), confirming that vehicles start to increase their occupancy 
rate when some threshold in the number of passengers is exceeded. 
Moreover, the usage of the vehicles is much higher than in the circular 
model. When looking into total costs (Fig. 9c), the same conclusions 
obtained for the circular model remain valid: average costs do not show 
a clear trend at the beginning, and scale economies prevail afterwards 
until they eventually get exhausted. 

4.3.3. Fixed time windows - circular model 
We now show the results when the bounds on the service times Ωw,

Ωa,Ωv are exogenous and independent of the demand level. This case 
requires very long computational times, as the high-demand scenarios 
do not have short time windows, which leads to combinatorial problems 
of large size. This is why we only present results from the circular model 
and consider vehicles with capacity 2 and 3. 

Results are shown in Fig. 10, and reinforce the conclusions previ-
ously discussed. Fig. 10b is very illustrative, as it shows that for very low 
demand (lower than 30 passengers/h) there is no sharing at all (at the 
end of the simulations), so that the only relevant scale source is the 
Mohring Effect and average delay (Fig. 10a) decreases. When the 
average occupancy rate begins to increase (Fig. 10b), the same happens 
with the average delay, triggered by the Extra-detour Effect. For a de-
mand larger than 100 passengers/hour, the average delay starts to 
decrease again, coinciding with the threshold after which the average 
load increases at a lower rate. Fig. 10c shows that when all costs are 
accounted for, scale economies prevail and eventually get exhausted. 

4.3.4. Fixed time windows - Manhattan 
We now show the outcome of simulating 1 h of ODRP operation over 
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Manhattan, considering subsets of increasing size extracted from a real- 
life database of taxi travellers. Results are depicted in Fig. 11, and show 
that the qualitative sources of scale that were discussed in Section 3, and 
verified numerically in ad-hoc networks in the previous subsections, 
remain valid under this real-life scenario. The delay (Fig. 11a) first de-
creases (Mohring effect), then increases (Extra-detour effect), and then 
decreases again (Better-matching effect). The threshold where the 

trends change coincides with the changes in the average occupancy rate 
per vehicle (Fig. 11b): when vehicles begin to be shared, the delay starts 
to increase, and when the sharing rate becomes more stable, the delay 
decreases. Finally, Fig. 11c shows once again that when all costs are 
taken into account, scale economies prevail but eventually get 
exhausted. 

Fig. 9. Average delay (a), active vehicle’s load at the end of the operation (b) and costs (c), faced by the users of the ODRP system in the feeder model with 
endogenous time windows, as the number of hourly passengers grows. Different curves represent different vehicles’ sizes. 

Fig. 10. a) Average total delay faced by the users, b) Average load per vehicle at the end of the simulation, and c) Average costs, in the ODRP system for the circular 
model with exogenous time windows, as the number of hourly passengers grows. Different curves represent different vehicles’ sizes. 

Fig. 11. a) Average total delay faced by the users, b) Average load per vehicle at the end of the simulation, and c) Average costs, in the ODRP system operated in 
Manhattan. Different curves represent different vehicles’ sizes. 
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4.4. Evolution and predominance of the three user-related scale effects 

We can now discuss the question posed at the end of Section 3: which 
of the user-related scale effects predominate and under which circum-
stances? The evolution of user-related scale phenomena as the number 
of users increases is described in Fig. 12. It is a stylized schematic figure 
that divides the analysis into three demand ranges, representing the 
respective demand segments (as seen in Figs. 6a, 9a and 10a, and 11a) in 
which the average delay first decreases, then increases, and then steadily 
decreases again. Fig. 12 shows the so-called Degree of scale economies 
(DSE), which is formally defined for any production function as the ratio 
of the average cost to the marginal cost: this means that there is a 
threshold in DSE = 1 determining whether economies or diseconomies 
of scale prevail. The mentioned three sectors are:  

● When the number of passengers is low (first segment of the curve, e. 
g. in the late-night period), users hardly share a vehicle, so that the 
Extra-detour and the Better-matching Effects are almost non- 
existent. This means that the Mohring Effect (which is more promi-
nent when the demand is low) prevails, and there are economies of 
scale.  

● Eventually, users begin to share the vehicle, and the system enters 
into the second demand range. The Extra-detour Effect begins to 
operate, and diseconomies of scale prevail. The Mohring Effect is still 
present, but dominated. The Better-matching Effect also starts to 
operate but mildly due to the increased passenger occupancy rate. 
The minimum of the curve represents the point at which vehicles’ 
load increases at the fastest pace.  

● Finally, when the vehicles cannot carry more passengers (they are 
full), the Extra-detour Effect disappears, and the Mohring Effect has 
little impact. The Better-matching Effect, on the other hand, is fully 
operative, leading to DSE > 1. Eventually, DSE converges to 1 as all 
these sources get exhausted. 

4.5. Comparison with an idealised public transport model 

As the single-line model resembles the operation of a traditional 
public transport line, it is natural to analyse under which conditions 
ODRP could replace such a line. A precise model of the public transport 
is out of the scope of this paper; however, we do perform a comparison 
with an idealised public transport line, whose frequency and bus ca-
pacity are optimised following a procedure described in Appendix A.1. 

Such a comparison is depicted in Fig. 13, and is informative regarding 
the trends in the respective curves. Fig. 13 depicts the ratio between the 
total costs (including operators and users) of ODRP and public transport, 
considering both the circular and the feeder models. In ODRP, we select 
the capacity of the vehicles that minimises total costs, considering 
endogenous time windows. ODRP is in the numerator, so that a value 
lower than 1 implies that ODPR provides the lowest total cost. The most 
relevant conclusions of this comparison are the following8:  

● ODRP should only be preferred if the demand is very low, in line with 
the findings of previous research efforts, as described in Section 2. 
This result is driven by the small size of the ODRP vehicles, and re-
lates to the almost door-to-door scheme that results in such scenarios. 
This last characteristic also explains why ODRP is more competitive 
in the circular model for low levels of demand, as in the feeder 
model, public transport also has zero walking at the destination, 
softening the benefits of ODRP.  

● For large demand levels, ODRP is more competitive in the feeder 
model. Note that in public transport, vehicles also need to “reba-
lance”, i.e., to return empty to the other extreme of the network. In 
this case, all vehicles have to arrive there, as their route is fixed. In 
ODRP, they do not need to arrive at that extreme, so that flexibility 
plays a role in diminishing the idle capacity of the system.  

● For large demand levels, curves tend to stabilise, which is a natural 
result of the constant returns to scale that characterises all these 
systems in such scenarios. 

In all, if one has to choose between using only ODRP (with small 
vehicles) or only traditional public transport, the former should be 
chosen only for low-demand zones. However, our results regarding the 
presence of scale economies when the demand is large, suggest that 
other types of integration could yield even better results, utilising both 
systems in some complementary way to take advantage of the good 
quality of service that can be offered to the users. How to design such an 
integrated system is a broad question that goes beyond the scope of this 
paper, but recognizing that there might be room for improving public 
transport provision in high-demand zones by means of smart utilisation 

Fig. 12. Synthesis of the three sources of users-related scale effects for ODRP 
systems. The y-axis represents the degree of scale economies (DSE), so that scale 
economies prevail when DSE > 1 and the contrary happens when DSE < 1 
(constant returns to scale if DSE = 1); the x-axis represents the number of users, 
and we do not include concrete numbers because this is a schematic repre-
sentation. The direction of each arrow represents if it pushes DSE upwards (i.e., 
scale economies) or downwards (i.e., scale diseconomies), while its length 
represents its magnitude. 

Fig. 13. Comparison between ODRP and public transport average costs as the 
number of hourly passengers grows, when the optimal capacity is selected, 
using AVs and enabling walks. Different curves represent the circular and the 
feeder model. 

8 Both problems might be faced with ad-hoc techniques like having some 
vehicles serving only the last portion of the line, i.e., a “short-turning” strategy, 
potentially combined with deadheading, as studied by Cortés et al. (2011). 
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of ODRP systems is a promising venue for further inquiry. 

5. Conclusions and future research 

In this paper, we have identified and analysed the sources of econ-
omies and diseconomies of scale in on-demand ridepooling (ODRP) 
systems. To do this, we have extended a state-of-the-art assignment 
method for ODRP, in order to optimise the fleet size together with the 
decisions of how to group the users and which vehicles are assigned to 
each group of passengers. 

We have discussed three scale effects affecting users, implying both 
positive and negative externalities to the other passengers. Positive ex-
ternalities are the Mohring effect, i.e., a reduction of waiting times as 
demand grows, and the “Better-matching effect”, i.e., the reduction of 
access times, waiting times, travel times and operator costs that it is 
possible because more efficient groups of passengers can be formed 
when demand grows. The negative externalities relate to increasing the 
number of users per vehicle, which induces longer detours, a phenom-
enon we call the “Extra-detour Effect”. There are only positive exter-
nalities on the operators’ side, namely that vehicles can be used more 
intensely so that the fleet size grows less than linearly as a function of 
demand. 

Such effects have been theoretically discussed and verified in simu-
lations, which have been run considering several different scenarios, 
including two simplified single-line configurations (in which ODRP is 
assumed to operate in the equivalent of a zone covered by a public 
transport line) and one real-world network from Manhattan, New York. 
Results are remarkably similar across all the scenarios analysed. The 
simulations have enabled determining which of these scale effects pre-
vail as the number of passengers increases. First, for low demand levels, 
there is little sharing and scale economies prevail thanks to the Mohring 
effect. Then, as total demand grows, users start to share rides and the 
Extra-detour effect dominates, leading to a global situation of disecon-
omies of scale for users. Finally, if demand increases even further, ve-
hicles run at capacity and again positive effects prevail thanks to the 
Better-matching effect. 

We have found that for the efficient operation of ODRP in a setting 
without request rejections, the possibility of asking the passengers to 
perform short walks to pick-up points is crucial to keep total costs low, 
both for users and operators. In particular, we have found that an ODRP 
system with human-driven vehicles and walks allowed has a total cost at 
a similar level to that of a door-to-door ODRP system with automated 
(fully driverless case) vehicles. This finding has significant implications 
for the current and future design of mobility systems based on shared 

vehicles and shared rides, either with human-driven or automated 
vehicles. 

If the system designer has to choose between a traditional public 
transport line or an ODRP system, the latter should be mostly preferred 
for low-demand zones. However, the scale effects in ODRP suggest that 
there could be other ways of integrating both systems to enhance public 
transport and attract users from private modes in high-demand sce-
narios, especially for feeder-like systems. Understanding how this could 
be done is the most relevant future research question that emerges from 
this paper. 

Our findings might be limited by the assignment method we utilise. 
However, even if another numerical setup may change the average costs 
estimated, we have qualitatively argued that (i) the three scale effects 
under scrutiny do exist in ODRP systems in general (including references 
to other studies when appropriate), (ii) they interact with each other and 
(iii) the influence of each other in pushing average costs up or down 
depends on the total demand level. 

As extensions to the current approach, including some market- 
related effects is a promising path. Considering that the fleet is owned 
by one or more for-profit shared-mobility companies might have an 
influence on scale analysis that is worth studying. Similarly, it is 
worthwhile to consider the case where the supply is not centrally 
controlled, i.e. drivers can choose when to connect and which passen-
gers to accept. Finally, users’ strategic responses to different pricing 
policies can have a relevant effect on the degree of sharing and therefore 
on the Extra-detour and Better-matching effects. 
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Appendix 

A.1 Public transport model 

In order to compare the performance of the ODRP and the public transport systems, we now describe the public transport model we assume, 
following the classical model by Jansson (1980) and the posterior adaptations by Jara-Díaz and Gschwender (2009). We will describe in detail the 
circular model only, as the feeder one can be derived directly. Let us begin introducing some notation: T refers to the time required by a bus to tour the 
whole circuit, i.e. 

T =
Z⋅a⋅L

v1
(A1)  

Where L stands for the length of each arc. We assume that each user requires an average time t to board and alight the bus. Denoting by f the line 
frequency (to be optimised) and by Y the number of passengers per time unit, then the bus cycle time is: 

tc = T +
tY
f

(A2) 

To use Eq. (A2) to express the operators’ costs, we use Eq. (10), i.e., assume that both operational and capital costs grow linearly with the bus 
capacity K. As the operating time is fixed in the public transport case (buses are operating all the time), this means that each bus cost can be expressed 
as c1 + c2K, with c1 = cA1 + EcO1, c2 = cA2 + EcO2, where E is the total operation time. Operators’ costs can then be written as: 

A. Fielbaum et al.                                                                                                                                                                                                                               



Economics of Transportation 34 (2023) 100313

16

f (T + tY / f )(c1 + c2K) (A3) 

Users’ costs are a weighted average of waiting, walking, and in-vehicle times, through the respective parameters pw,pa, and pv. Therefore, the public 
transport costs are calculated by solving the following optimization problem: 

min
K,f

f (T + tY / f )(c1 + c2K) + Y(pwtw + pata + pvtv) (A4)  

s.t. K ≥
t
f

Y (A5) 

Eq. (A4) represents the sum of operators’ and users’ costs. We assume homogeneous headway, vehicles do not run full (passengers can board the 
first vehicle that arrives) and random user arrivals at constant rates, which imply that the average waiting time is tw = 1/2f . Average in-vehicle time tv 

can be calculated as we know the average distance travelled by the users; it includes running time plus time spent at stops where other users board and 
alight. Average walking distance can be computed directly when the random demand is created, by calculating the distances between the real origins 
and the bus stations of the respective zones, and doing the same for the destinations. Dividing such distances by the walking speed va results in the 
average walking time ta. Eq. (A5) ensures that all users will fit on the bus. As the objective function in Eq. (A5) increases with K, this constraint will 
always be active. Factor α represents the ratio between the most loaded and the average arc, which can also be computed directly once the random 
demand is known. 

A.2 Glossary and numerical value of the parameters  

Table A1 
Glossary of the parameters used throughout the paper. Stopping time τ is computed following Roess et al. (2004). Operators’ cost 
parameters cO1, cO2, cA1, cA2 for human-driven and automated vehicles are calculated for Santiago, Chile, based on Tirachini and 
Antoniou (2020). Time required to board and alight the vehicles t is taken from Jara-Díaz et al. (2017). Walking speed vA, as well as 
users’ costs parameters pw, pa, pv are obtained from Fielbaum et al. (2021). The rest of the parameters are ours.  

Symbol Meaning Value 

δ Time elapsed between two consecutive assignments in ODRP. 1 [min] 
τ Time spent by the ODRP vehicle at each stop. 10.5 [sec] 
a Number of longitudinal streets in a zone. 5 
b Number of transversal streets in a zone. 7 
v1 Vehicles’ speed in fast streets. 25 [km/h] 
v2 Vehicles’ speed in low streets. 12.5 [km/h] 
Z Number of zones 45 
γ Level of dispersion of the origins and destinations within a zone. 0.2 
l Average number of zones toured by the users in the circular model. 10 
σ2 Variance of the number of zones toured by the users in the circular model. 4 
L Arcs’ length. 50 [m] 
t Time required to board and alight a public transport vehicle. 5 [sec] 
E Total operation time 10 [h] 
cO1 Fixed operating cost per vehicle. 1.13 [US$/h] 
cO2 Capacity-dependant operating cost per vehicle. 0.074 [US$/h-seat] 
cA1 Fixed capital cost per vehicle (AV/Human-Driven). 24.6/78.1 [US$] 
cA2 Capacity-dependant capital cost per vehicle (AV/Human-Driven). 2.1/1.2 [US$/seat] 
va Walking speed. 5 [km/h] 
pv Monetary equivalent cost of one time unit spent by a user in-vehicle. 2.32 [US$/h] 
pa Monetary equivalent cost of one time unit spent by a user waiting. 4.64 [US$/h] 
pw Monetary equivalent cost of one time unit spent by a user walking. 4.64 [US$/h]  
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