
Springer Nature 2021 LATEX template

Learning scalable and efficient communication policies for

multi-robot collision avoidance

Álvaro Serra-Gómez1*, Hai Zhu1, Bruno Brito1, Wendelin Böhmer2 and Javier
Alonso-Mora1

1Department of Cognitive Robotics, Delft University of Technology, Mekelweg 2, Delft,
2628 CD, Netherlands.

2Algorithmics group, Delft University of Technology, Van Mourik Broekmanweg 6, Delft,
2628 XE, The Netherlands.

*Corresponding author(s). E-mail(s): a.serragomez@tudelft.nl;
Contributing authors: h.zhu@tudelft.nl; bruno.debrito@tudelft.nl; j.w.bohmer@tudelft.nl;

j.alonsomora@tudelft.nl;

Abstract

Decentralized multi-robot systems typically perform coordinated motion planning by constantly
broadcasting their intentions to avoid collisions. However, the risk of collision between robots varies
as they move and communication may not always be needed. This paper presents an efficient
communication method that addresses the problem of “when” and “with whom” to communi-
cate in multi-robot collision avoidance scenarios. In this approach, each robot learns to reason
about other robots’ states and considers the risk of future collisions before asking for the trajec-
tory plans of other robots. We introduce a new neural architecture for the learned communication
policy which allows our method to be scalable. We evaluate and verify the proposed communi-
cation strategy in simulation with up to twelve quadrotors, and present results on the zero-shot
generalization/robustness capabilities of the policy in different scenarios. We demonstrate that
our policy (learned in a simulated environment) can be successfully transferred to real robots.

Keywords: collision avoidance, multi-robot communication, multi-agent reinforcement learning, aerial
robots, multi-robot systems.

1 Introduction

Being able to account for the future trajectory
of other robots is of utmost importance for safe
navigation in environments shared with other
robots. Centralized systems achieve this objec-
tive by using a central station to manage all
of the robots’ information and plans but they
are difficult to scale up to large teams. Instead,
decentralized systems can scale up by relying on

each robot’s on-board computation capabilities.
Some decentralized solutions have each robot esti-
mate other robots’ behaviors or future trajectories
through trained parametric functions, e.g. neural
networks (Zhu, Claramunt, Brito, & Alonso-Mora,
2021). However, these solutions are generally com-
putationally expensive and may have inaccuracies
stemming from the lack of information on the
other robot’s goals and local observations. Instead,
direct communication of each robot’s trajectory

1

Springer Nature 2021 LATEX template

2 Article Title

intentions may allow to obtain accurate predic-
tions with less computational effort. Common
communication policies broadcast to all robots,
employing distance-based heuristics to commu-
nicate trajectory plans. However, much of this
information becomes redundant or unnecessary
when robot motions do not present a threat to oth-
ers, e.g. when they are far from each other, or may,
at worst, harm the multi-robot system’s perfor-
mance (Talamali, Saha, Marshall, & Reina, 2021).
Besides, designing a set of rules to communicate
efficiently may be difficult as it would require to
estimate a priori the future value of communicat-
ing with other robots, which also depends on their
motion planner and dynamics. Since there is no
clear intuition on how to hand-engineer an ade-
quate trade-off between communication efficiency
and safety, in this work, we focus on the following
two issues: a) providing a solution to the prob-
lem of when and with whom to communicate that
can scale up to large teams of robots, and b) how
to couple this communication policy with existing
motion planning methods.

We propose an efficient communication policy
method combined with an optimal control motion
planner for multi-robot collision avoidance that
can handle large multi-robot systems with vary-
ing number of robots. The approach leverages
the strengths of learning methods for decision-
making and nonlinear receding horizon control,
or Non-Linear Model Predictive Control (NMPC)
for multi-robot motion planning. In particular, we
use Multi-Agent Reinforcement Learning (MARL)
to learn the robots’ communication policies. For
every robot and time instance, the policy selects
a set of other robots (Wheeler, Bharathi, & Gil,
2019) and requests their trajectory plans. Non-
selected robots are assumed to follow their last
communicated which trajectory extended assum-
ing constant velocity. This last communicated tra-
jectory is exploited as long as they remain within
a tolerance distance. Otherwise, robots that do
not follow their last communicated trajectory are
assumed to follow a constant velocity trajectory.
Then, we formulate a nonlinear optimization prob-
lem to generate a safe trajectory. The planned
trajectory takes into account the requested and
estimated trajectories represented as constraints
in the receding horizon framework.

The main contributions of this work are:

• A combined communication policy and trajec-
tory planning method for micro-aerial vehicles
(MAVs), that utilizes the strengths of non-
linear model predictive control (NMPC) to plan
safe trajectories, and multi-agent reinforcement
learning (MARL) to learn an efficient commu-
nication policy.

• An on-line communication policy that uses
MARL to learn (off-line) when and with whom
it is useful to communicate, decreasing the
amount of communication while still achieving
safe navigation and coordination among robots.

• We introduce a new neural architecture for
the learned communication policy that scales
to large and varying number of robots while
still providing safe navigation in a variety of
situations.

• We demonstrate that the communication policy,
which is trained in a simulator, works equally
well in physical MAVs.

We evaluate our method with team of vary-
ing number of quadrotors in simulated scenarios
requiring different levels of interaction for safe
navigation and compare it with four other heuris-
tic based methods for communication. We then
test the robustness of our method under differ-
ent levels of observation noise. Finally, we show
that our method presents zero-shot generaliza-
tion properties when tested in scenarios with more
robots than during training while still maintaining
safety online.

In an earlier conference version of this work
(Serra-Gómez, Brito, Zhu, Chung, & Alonso-
Mora, 2020), an early version of the framework to
learn a communication policy and its combination
with a local motion planner was introduced for a
fixed number of robots. In this paper, we extend
the approach with a new neural architecture and
refine the training procedure of the communica-
tion policy to render the final navigation policy
safer in interaction-rich situations, more robust to
sampled training scenarios and scalable to robot
teams of varying number of robots. We show
that our learning method enables the emergence
of more efficient and intuitive communication
behaviours than before, while maintaining a per-
formance similar to that of broadcasting policies
with regards to safe navigation.

Springer Nature 2021 LATEX template

Article Title 3

2 Related Work

2.1 Communication in Collision
Avoidance

We focus our work on online local motion planning
for multi-robot systems (also referred as multi-
robot collision avoidance), which has been actively
studied over the past years. Traditional reactive
controller-level approaches include the optimal
reciprocal collision avoidance (ORCA) method
(Van Den Berg, Guy, Lin, & Manocha, 2011),
the artificial potential field (APF) based method
(Yongjie & Yan, 2009), the buffered Voronoi cell
(BVC) approach (Zhou, Wang, Bandyopadhyay,
& Schwager, 2017; Zhu & Alonso-Mora, 2019a),
and control barrier functions (CBF) (L. Wang,
Ames, & Egerstedt, 2017). These methods are
fully decentralized and each robot only needs to
know other robots’ current state, which can be
measured by the robot via its onboard sensors.
Hence, communication among robots is not nec-
essary. However, these reactive methods are ineffi-
cient since they typically plan one time step ahead.
This can result in overly conservative policies that
are more vulnerable to deadlocks than predic-
tive collision avoidance methods. These issues can
be overcome by using a model predictive con-
trol (MPC) framework for collision-free trajectory
generation that accounts for the plans of other
robots (Zhu & Alonso-Mora, 2019b).

For each robot to solve a local trajectory
optimization problem in the MPC framework, it
needs to know the future trajectories of other
robots. One approach is to let each robot com-
municate its planned trajectory with every other
robot in the team. Hence, robots can then update
their own trajectories to be collision free with
other robots’ trajectory plans, as in these dis-
tributed MPC works (Luis, Vukosavljev, & Schoel-
lig, 2020; Zhu & Alonso-Mora, 2019b). Another
approach is to let each robot predict other robots’
future motions based on its own observations.
For instance, Kamel, Alonso-Mora, Siegwart, and
Nieto (2017) employs a constant velocity model
when predicting other robots’ future trajectories.
In that case, communication among robots is not
required. However, such a prediction can be inac-
curate and may lead to unsafe trajectory planning,
in particular when the robots are moving at a high
speed (Zhu & Alonso-Mora, 2019b). In this paper,

we aim to develop a communication policy, which
determines “when” and “with whom” a robot
should communicate with another robot in the
system, to reduce the amount of communication
while still keeping a high-level of safety.

2.2 Communication Scheduling

A lot of works tend to formulate the problem
of efficient communication in a receding horizon
fashion. Some methods formulate the problem
as a decentralized version of a Markov Deci-
sion Process (Dec-MDP) (Roth, Simmons, &
Veloso, 2005) or Partially Observable MDP (Dec-
POMDP) (Becker, Carlin, Lesser, & Zilberstein,
2009) and try to optimize a value function in which
communications are penalized. Others, such as
Kassir, Fitch, and Sukkarieh (2016), choose to for-
mulate a constrained optimization problem where
communications must be directly minimized while
still guaranteeing data flow throughout the net-
work. These approaches assume access to an
analytical model or require the design of a hand-
engineered utility function to estimate the future
effects of communication, which might not be
available or intuitive to do, respectively. Recent
work (Best, Forrai, Mettu, & Fitch, 2018) manages
to tackle this problem by triggering communica-
tion whenever uncertainty over another agent’s
actions exceeds a threshold. Ultimately, however,
receding horizon methods are limited by their pre-
diction horizon and the need for hand-engineered
evaluation heuristics, which can unintentionally
bias the resulting communication processes. In
this work, we use reinforcement learning meth-
ods to learn the communication policy. Through
learning from experience, this family of methods
has the potential to discover more general policies
without the need for fine-tuning hand-engineered
heuristic functions..

2.3 Learning Methods for
Coordination

One major challenge in Multi-Agent Reinforce-
ment Learning (MARL) is the non-stationarity
of multi-agent environments. This problem is
caused by having multiple agents that learn and
change their policy every learning iteration, which
may result in the learning process being unsta-
ble. In order to mitigate this challenge, recent

Springer Nature 2021 LATEX template

4 Article Title

works on MARL (Foerster, Farquhar, Afouras,
Nardelli, & Whiteson, 2018; Iqbal & Sha, 2019;
Lowe et al., 2017; Rashid et al., 2018; Son, Kim,
Kang, Hostallero, & Yi, 2019; Sunehag et al.,
2018) perform centralized training and decentral-
ized execution. This paradigm has been applied
in the field of non-communicating multi-robot col-
lision avoidance tasks (Everett, Chen, & How,
2018; Everett, Chen, & P. How, 2019) to learn an
end-to-end navigation policy. Yet, these methods
typically do not offer solid theoretical guaran-
tees for collision avoidance. Instead we aim to
learn the communication policy while leveraging
already existing well-performing motion planners,
e.g. (Zhu & Alonso-Mora, 2019b).

Regarding tasks that require communication,
several works have been published recently. Many
of them focus on learning what content should be
shared among agents, be it in the form of explicit
messages (Li, Gama, Ribeiro, & Prorok, 2020),
a composition of binary signals (Foerster, Assael,
de Freitas, & Whiteson, 2016) and predefined
symbols (Mordatch & Abbeel, 2018), policy hid-
den layers (Sukhbaatar, Szlam, & Fergus, 2016),
or by directly sharing parameters among agents
(Gupta, Egorov, & Kochenderfer, 2017). The most
relevant to our work additionally focus on learn-
ing, in a scalable way, policies that are able to
appropriately choose when and with whom to
communicate or cooperate in collision avoidance
tasks. Jiang and Lu (2018) assign roles to every
agent, making some of them in charge of orga-
nizing a common communication channel with
their neighbours. However, regions where there is
no agent with such a role are left without coor-
dination capabilities. Instead, Das et al. (2019),
Li, Lin, Liu, and Prorok (2020) and Zhai et al.
(2021) present end-to-end MARL algorithms that
design an attention module to assign and weight
the importance of the messages received from
other agents. While previous methods use dense
attention mechanisms, Sun, Shen, and How (2020)
proposes an adaptive sparsity-inducing activation
function to enable learning a sparse communica-
tion graph. Along these lines, Ding, Huang, and
Lu (2020) learn to choose whom to communicate
with and evaluate the received messages to choose
an action.

Similarly, the method we present in this paper
can also be considered as an attention mod-
ule targeting other agents. However, we set our

communications to be unilateral to promote asym-
metrical behaviour. Additionally, we decouple the
problem of communication and motion planning,
allowing the combination of our method with
existing and well-tested solutions for motion plan-
ning in collision avoidance tasks.

3 Preliminaries

In this paper, we address the problem of deciding
when and with whom to communicate during a
multi-robot collision avoidance task. Though the
proposed formulation is intended to be general,
we are inspired by the results obtained in Zhu
and Alonso-Mora (2019b), which show how in a
collision-avoidance scenario, methods that incor-
porate communication have a clear advantage over
those that do not. We approach the information-
sharing process as a MARL problem where the
robots must learn to request information effec-
tively. In this section, we set the context for our
targeted communication process by formulating
the problem of multi-robot collision avoidance.
We provide an overview of the Non-Linear Model
Predictive Control method used for motion con-
trol, as well as our MARL framework, introducing
relevant notations for this work.

3.1 Multi-Robot Collision
Avoidance

Consider a team of n robots moving in a shared
workspace W ⊆ R3, where each robot i ∈ I =
{1, 2, . . . , n} ⊂ N is modeled as an enclosing
sphere with radius r. The dynamics of each robot
i ∈ I are described by a discrete-time equation as
follows,

xt+1
i = f(xt

i,u
t
i), x0

i = xi(0), (1)

where xt
i ∈ X ⊂ Rnx denotes the state of the

robot with dimension nx, typically including its
position pt

i ∈ R3 and velocity vt
i ∈ R3 (amongst

others, see section 4.1.1), and ut
i ∈ U ⊂ Rnu

the control inputs with dimension nu. The func-
tion f is the model of the robot and is detailed
in Appendix A. The super-script ·t indicates the
time step t. X and U are the admissible state
space and control space respectively. xi(0) is the
initial state of robot i. Any pair of robots i and
j from the group are mutually collision-free if

Springer Nature 2021 LATEX template

Article Title 5 ∥∥pt
i − pt

j

∥∥ ≥ 2r, ∀i ̸= j ∈ I,∀t = 0, 1, Each
robot has a given goal location gi, which gener-
ally comes from some high-level path planner or
is specified by some user.

Robots in the team are allowed to communi-
cate. Communication is assumed to be ideal, e.g.
robots can communicate with each other perfectly
and instantaneously. We also assume a point-
to-point network topology. The implementation
is viable provided that communication protocols
with low energy consumption, such as a mesh net-
work where links are established using Bluetooth
LE, are utilized. Under this communication pro-
tocol, point-to-point communication topologies
generally use less bandwidth than broadcasting
topologies and scale better with the number of
robots as they allow for redundant or unnecessary
communication to be avoided. Robots can asso-
ciate other robots with the messages they send
since, in practice, each sender could add its ID to
the message or the receiving robot could infer it
using the first position of the received trajectory.

The objective of multi-robot collision avoid-
ance is to compute a local motion ut

i for each
robot in the group, that respects its dynamics con-
straints, makes progress towards its goal location
gi and is collision-free with other robots in the
team for a time horizon τ = N∆t, where ∆t is
the sampling time and N is the number of discrete
steps.

3.2 Distributed Model Predictive
Control

The key idea of using distributed model predictive
control to solve the multi-robot collision avoidance
problem is to formulate it as a receding horizon
constrained optimization problem. For each robot
i ∈ I, the discrete-time constrained optimization
formulation is

min
x0:N
i ,u0:N−1

i

N−1∑
k=0

J t
i (x

k
i ,u

k
i) + JN

i (xN
i ,gi)

s.t. x0
i = xi(0),

xk+1
i = f(xk

i ,u
k
i),∥∥pk

i − pk
j

∥∥ ≥ 2r,

uk−1
i ∈ U , xk

i ∈ X ,
∀j ̸= i ∈ I; ∀k ∈ {0, 1, . . . , N}.

(2)

Where Jk
i (x

k
i ,u

k
i) and JN

i (xN
i ,gi) are the stage

and terminal costs, respectively (Zhu & Alonso-
Mora, 2019b) (defined on Appendix B). At each
time step, each robot in the team solves online
the constrained optimization problem (2) and
then executes the first step control inputs, in a
receding-horizon fashion. In this paper, the gener-
ated future plans of robot i are also called robot
i’s (future) trajectory intentions.

3.3 Problem Formulation

For each robot to solve problem (2), it has to
know the future trajectories of other robots in
the team. Aside from the particular case of pri-
oritized sequential motion planning schedules,
obtaining the exact information on future trajec-
tories beforehand is generally not feasible. Thus,
other robots’ future positions can be approxi-
mated either by estimating their predictions (Zhu
et al., 2021) or by requiring them to communicate
their trajectory intentions, computed during the
previous time step (Zhu & Alonso-Mora, 2019b).

At time t, let T̂ t
j|i = {pt+1:t+N

j |
predicted at time t} be the N-time horizon trajec-
tory of robot j ∈ I, j ̸= i that robot i assumes
and uses in solving the problem (2), where the
hatˆindicates that it is what robot i knows about
the other agent’s trajectory. Further denote by
T t
i = {pt:t+N

i | predicted at time t} the trajec-
tory for robot i planned at time t. As mentioned,
there are two ways for robot i to approximate the
future trajectory of robot j, namely T̂ t

j|i:

• Without communication: robot i predicts
another robot’s future trajectory based on their
current states, that is

T̂ t
j|i = prediction(xt

j), ∀j ̸= i ∈ I. (3)

In Kamel et al. (2017), each robot was con-
sidered to follow constant velocity model for
the prediction. However, this approach ignores
the previously communicated information on
future trajectory intentions from other robots,
even when they could potentially hold more
information on other robots’ future positions
than constant velocity estimates. Our predic-
tion model uses the last communicated trajec-
tory plans and expands it by assuming constant
velocity. If robot j strays past a predetermined

Springer Nature 2021 LATEX template

6 Article Title

distance from its last communicated trajectory
intentions, then robot j is estimated to fol-
low a constant velocity model from its current
position (section 4.4).

• Communication request: Robot i can
request other robots j in the team to commu-
nicate their planned trajectories at each time
step, that is:

T̂ t
j|i(0 : N−1) = T t−1

j (1 : N), ∀j ̸= i ∈ I. (4)

where T̂ t
j|i(a : b), with a ≤ b, represents the

subsequence of T̂ t
j|i that goes from the ath to

the bth-indexed element (inclusive). At time t,
the last position of the communicated path of
robot j: T̂ t

j|i(N) = p̂N
j|i, cannot be communi-

cated as it is beyond the N-time horizon at
time step t − 1. Therefore it is estimated by
assuming constant velocity of robot j: p̂N

j|i =

p̂N−1
j|i + (p̂N−1

j|i − p̂N−2
j|i).

Both of the two methods have their advantages
and disadvantages. Fully communicating meth-
ods allow more accurate predictions and achieve
safe collision avoidance as long as a feasible solu-
tion is found, but they require a large amount
of communication among robots. If there is no
communication, the robot may plan an unsafe
trajectory if its prediction on other robots’ trajec-
tories deviates from their real ones or an overly
conservative trajectory to avoid collisions.

Motivated by these facts, this paper aims to
solve the problem of “with whom to communi-
cate” for each robot in the team for collision
avoidance. More precisely, at each time step, each
robot i decides whether or not to request a trajec-
tory intention from every other robot j. If robot i
decides to request robot j, robot j should commu-
nicate its planned trajectory to robot i. If robot i
decides not to request robot j, it predicts robot j’s
future trajectory based on its last communicated
trajectory intention and the observed current state
of robot j.

Denote by πt
i = {ctj|i | ∀j ̸= i} the communica-

tion vector of robot i at time t, in which ctj|i = 1
indicates that robot i requires a communicated
trajectory from robot j. Otherwise ctj|i = 0. Note

that cti|i = 0 since the robot does not need to com-

municate with itself. Let πt = {πt
1; . . . ; π

t
n} be

the communication matrix of the multi-robot sys-
tem at time t in an episode of length Te. We define
the communication cost of the system to be

C(πt) =
1

Nc(n)

n∑
i

n∑
j

ctj|i. (5)

Where Nc(n) = n(n − 1)/Te is a normalization
factor depending on the number of agents and the
length of the episode, that represents the maxi-
mum amount of communications that can happen
within a system of n robots across Te timesteps.
The objective of this paper is to find a policy for
each robot i,

πt
i = πi(x

t
1,x

t
2, . . . ,x

t
n) = {ctj|i | ∀j ̸= i} (6)

that minimizes C(πt) while ensuring that the
robots are collision-free with each other in the
system.

4 Method

An overview of the proposed method is given in
Figure 1. It consists of two components: a learned
communication policy, which we introduce as
WW2C, that decides with whom to communicate,
and a NMPC planner.

Every time step, based on its partial obser-
vation of the current joint state zti , every robot
targets a set of other robots πt

i and requests their

intended trajectory plans T̂ t
j|i = T

t−1
j according to

a learnt parametric policy πi,θi(z
t
i). Those robots

not targeted are estimated to follow a previously
communicated trajectory extended assuming con-
stant velocity or, in case it is no longer useful, a
constant velocity model T̂ t

j|i = prediction(xt
j) as

described in section 3.3.
A receding horizon optimization is then

employed to plan the future intended trajectory
T t
i for robot i. To guarantee the safety of such a

trajectory, the resulting path is constrained to not
intersect with T̂ t

j|i for any j ̸= i. The first action
input from the computed plan is applied and a
new observation is gathered. Along this work we
assume that robots plan and execute actions in
a synchronized fashion. While this assumption
is necessary for learning the communication pol-
icy, it can be alleviated during test time since

Springer Nature 2021 LATEX template

Article Title 7

Fig. 1: Schema of the proposed method for effi-
cient communication. πt

i(zi) is the communication
policy dependent on the observation zi. T t−1

j is
the trajectory plan of robot j at the previous time
step. And T̂ t

j|i is the combination of obtained and
estimated trajectories of the other robots.

robots employ previously received or estimated
trajectories (Zhu et al., 2021).

4.1 Reinforcement Learning Setup

We formulate a multi-robot reinforcement learn-
ing problem to compute an efficient communica-
tion policy. By considering the MPC based motion
planner as part of the transition function, this
problem can be transformed into a decentralized
POMDP (Bernstein, Givan, Immerman, & Zilber-
stein, 2002). The decentralized POMDP is com-
posed of six components, including state space,
action space, observation space, reward function,
transition model and observation model.

4.1.1 State space X
For every robot i, xi ∈ X must account for
the current physical state, its goal position, its
sequence of intended future positions, computed
during the previous time step by the motion plan-
ner, and its knowledge on other robots’ future
trajectory plans. Therefore, the state at time t can
be defined as:

xt
i := [gi,p

t
i,v

t
i, T t−1

i , T̂ t−1
−i|i], (7)

Xt := {xt
1,x

t
2, ...,x

t
n}, (8)

where gi,p
t
i,v

t
i ∈ R3 are the goal, position and

velocities of robot i at time t, and T̂ t−1
−i|i = {T̂ t−1

j|i |
∀j ̸= i}. Then, Xt is the joint state of the whole
multi-robot system. Following a similar formula-
tion as Everett et al. (2019), robot i only has
access to the information of its own state xt

i and

the terms from other robots j that can be esti-
mated through its sensors, such as their positions
and velocities.

4.1.2 Observation space Z
We assume all robots are within sensor range (e.g.
camera, lidar, ...) of each other and can always
estimate the relative positions and velocities of all
other robots. Each robot also knows the relative
position of its own goal from a mission planner.
For robot i, partial observations on the joint state
at time t are:

zt
i = [vt

i,p
t
i,g, {d

t
j|i}j∈I\i, {pt

j|i}j∈I\i, {vt
j|i}j∈I\i],

(9)
where dtj|i,p

t
j|i and vt

j|i are the relative distances,
positions and velocities of the other robots with
respect to the ith robot, and pt

i,g is the relative
position of robot i’s goal. The joint observation
from all robots is denoted by zt = {zt

1, ...,z
t
n} ∈ Z

4.1.3 Action space A = ×i∈IAi

As it has already been introduced in section 3.3,
we denote by πt

i = {ctj|i | ∀j ̸= i} the communi-
cation vector of robot i at time t. Note we have
dropped the ith element as the robot cannot com-
municate with itself. Therefore the action space
for robot i is:

Ai = {0, 1}n−1

Note that the dimensionality of the action
space depends on the number of agents. This
matter will be further addressed later in 4.2.

4.1.4 Reward Ri(x
t, πt)

The reward function is chosen based on the mul-
tiple behaviors we want to achieve. It aims for the
learned communication policy to communicate as
little as possible while allowing each robot in the
team to reach its goal and avoid collisions. The
reward value R(xt, πt) is the immediate reward
that every robot i gets at a state x ∈ X after
applying the communication vector πt

i .
Global rewards are often used in multi-agent

systems in order to capture coordinating coupled
behaviors. However, this often leads to multi-agent
credit assignment problems during training (Rah-
mattalabi, Chung, Colby, & Tumer, 2016). In this

Springer Nature 2021 LATEX template

8 Article Title

work we attempt to capture coupled behaviors by
employing the same reward function conditionned
to each robot’s state individually. Since all agents
share the same architecture and policy parame-
ters, this allows to quickly learn to properly punish
pairwise interactions such as collisions and com-
municationsas all samples from all robots can be
used in the same way to compute the gradients
and update the parameters of the communication
policy. Also, even though reward signals are indi-
vidual, optimising the same set of parameters for
all agents at the same time allows to account for
coordinating behaviours when there are more than
two agents crossing paths. The reward function is
composed of the following weighted combination
of terms:

Ri(x
t, πt

i) = wgRg,i(x
t) + wcollRcoll,i(x

t)

+ wcRc,i(π
t)

(10)

where wg, wcoll, wc are the weights for each term.
Each reward term is defined:

Rg,i(x
t) =

{
rg

∥∥pt
i,g − pt

i

∥∥ ≤ ri
0 otherwise

with rg > 0 is a tuned reward given at the end of
the episode if robot i is within its goal, ri is the
radius of the smallest sphere containing the robot.
This reward gives an incentive to learn communi-
cation patterns that stir the robot toward its own
goal.

Rcoll,i(x
t) =

−rcoll ∀j ∈ I, i ̸= j,∥∥pt

i − pt
j

∥∥ ≤ ri + rj

0 otherwise

where rcoll > 0 is a tuned penalty term for the
collision between any two robots.

Finally the local penalization term for path
plan requests is similar to the global version
introduced before in section 3.3 and has the form:

Rc,i(π
t) = −Ci(π

t) = − 1

Ni(n)

n∑
j ̸=i

ctj|i.

Where Ni(n) is a local normalization term
depending on the number of agents.

4.1.5 Observation model
O(zt+1, xt+1, πt)

We assume that every robot i can directly observe
the positions and velocities of other robots.
Although not all information is observed, the
observation vector is determined completely by
the given state vector xt+1.

4.1.6 Transition model T (xt+1, πt, xt)

The transition model can be decomposed into a
communication step and a physical action step.
The communication step is stochastic, only during
training (see Section 4.2), and models the effects
of communication πt on the constrained optimiza-
tion problem used to compute the control actions
applied at time step t, ut. Then, the robot model
f , introduced in Section 3.1, determines the joint
state at the next time step xt+1. Note that, since
we are sharing parameters, the communication
matrix πt depends directly on the shared policy.
The robots employed in this paper are quadrotors,
thus the state transition can be interpreted as the
quadrotor model introduced in Appendix A.

4.2 Network Architecture

Given the input (observation zti) and output
(action πt

i), we elaborate on the communication
policy network mapping zti to πt

i . We want each
robot to process all the information from the envi-
ronment and decide whether it needs to make a
request to any of the other robots. While con-
catenation of other robots observed information
is possible at low scales, learnt policies are bound
to quickly deteroriate in performance as the input
vector dimensionality grows exponentially with
the number of robots. We need an architecture
that can provide a compact representation of the
observed information of an arbitrary number of
other robots, while still being able to leverage that
information and choose whether each robot’s tra-
jectory is needed to compute a safe trajectory.
Therefore, we need an architecture that can pool
together all the information coming from all dif-
ferent robots while still being able to output a
different signal for each one of them.

There are several recent works in the field
motion planning that use information pooling
mechanisms. Often, simulated laser scanner obser-
vations allow to consider all information in the

Springer Nature 2021 LATEX template

Article Title 9

 Encoder

Linear(32)

robot i

robot j

Transformer x 3

heads: 2
embed. dim: 32
hidden. dim: 64

Decoder
(Policy)

Relu(64) +
Linear(2)

Decoder
(VF)

Relu(64) +
Linear(1)

Sum

n-1 robots

Fig. 2: Proposed network policy architecture. Information from the ego and other robots is marked
respectively in orange and red. Red arrows show the flow of information through the architecture of
each individual robot j. Architecture layers are marked in green. Concatenation and Sum operations are
marked in blue. Outputs are shown in purple.

environment without having to explicitly define
each element and its properties (Fan, Long, Liu,
& Pan, 2020; R.E. Wang et al., 2020). How-
ever, individual information on each of the other
agents and their interaction with the environ-
ment are lost. Other works address this issue by
using Recurrent Neural Networks (RNN) (Hochre-
iter & Schmidhuber, 1997) over the sequence of
other robots observations (Brito, Everett, How, &
Alonso-Mora, 2021; Everett et al., 2019). While
these methods allow to learn the additional cou-
pled effects resulting from adding each robot into
the environment representation, they are not per-
mutation invariant and their performance depends
on the heuristic ordering method chosen to feed
the elements into the network. Methods using
Graph Neural Networks (GNN) (Gama, Marques,
Leus, & Ribeiro, 2019), represent elements in the
environment as vertices in a graph and allow to
learn a permutation equivariant and compact rep-
resentation of the set of observed information on
each one of the vertices (Li, Gama, et al., 2020).
In Kurin, Igl, Rocktäschel, Boehmer, and White-
son (2020), attention mechanisms (Vaswani et al.,
2017) are formulated as a GNN for the particular
case of fully connected graphs and are used to map
a set of sensor measurements from an agent with
multiple limbs, to a set of actions to be applied
by each one of them. We build our policy net-
work on top of the attention-based architecture
proposed in Kurin et al. (2020) and extend its use
to homogeneous multi-agent environments.

Our communication policy architecture is
depicted in Figure 2. We design a five-hidden-
layer neural network as a non-linear function
approximation of the policy πθ. For each robot i,
we arrange the information on the other robots
{dt

j|i}j∈I\i, {pt
j|i}j∈I\i, {vt

j|i}j∈I\i into a sequence

of vectors {(dt
j|i,p

t
j|i,v

t
j|i)}j∈I\i and append the

observed information on robot i at the end of
each element in the sequence. Our policy net-
work consists of three parts: an encoder layer,
a transformer block and a decoder layer. Each
one of these layers have the property of being
permutation equivariant and enable processing
sequences with an arbitrary number of vectors,
even during testing. The encoder layer consists
of a linear layer applied independently to each
element of the sequence, mapping each element
zt
j to a latent representation of higher dimen-

sion z̃t
j . We employ a three-layered transformer

(Vaswani et al., 2017), to allow each element z̃t
j

in the sequence to exchange information among
themselves and encode the information present in
the environment while still providing a different
result for each element. However, information on
each robot’s relative position and velocities are
still very important regardless of the additional
information and coupled effects coming from other
robots in the environment. To preserve this infor-
mation, we concatenate each element j with its
counterpart z̃t

j , which also enables the transformer
block to focus on learning the coupled effects
in communication arising from having multiple
agents in the environment.

Springer Nature 2021 LATEX template

10 Article Title

The network has two decoder heads applied
independently to each one of the sequence out-
puts: one computes the communication action
for each robot j: πt

i , while the other esti-
mates the state-value function: V π(xt) =
Ex∼pπθ

,a∼πθ
[
∑∞

k=0 γ
kRi(x

k, a) | x0 = xt]. Both
of them start with a multi-layer perceptron with
a hidden layer with a ReLU non-linearity and
an output linear layer. The first head outputs
a 2-dimensional vector per robot of communica-
tion scores that we project onto the probabil-
ity 1-simplex with a softmax activation function
resulting in the vector [pj|i, 1 − pj|i]. To enhance
exploration, during training the output action is
sampled from the resulting Bernoulli distribution
B(pj|i). While testing, we follow a determinis-
tic policy where robot i requests j’s trajectory
intentions when pj|i > 0.5.

The second head outputs a scalar representing
the contribution Vj|i of each robot j to the value
function. Similar to the use of value decomposi-
tion networks in collaborative multi-agent tasks
(Sunehag et al., 2018), we model agent’s i value
function as V π(zt

i) =
∑n

j ̸=i,j=1 Vj|i.

4.3 Multi-Scenario Multi-Stage
Training

In order to learn a robust communication policy,
we present a multi-stage training scheme in varied
scenarios with a clear separation between training
and test regime.

4.3.1 Training algorithm

Here we focus on learning a robust communica-
tion policy that, in combination with an MPC
for motion planning, allows large multi-robot sys-
tems to coordinate and navigate at least as safely
as when using broadcasting communication poli-
cies. To accomplish this, we use the extension
to homogeneous multi-agent systems developed in
Fan et al. (2020) of the on-policy policy gradient
algorithm: Proximal Policy Optimization (PPO)
(Schulman, Wolski, Dhariwal, Radford, & Klimov,
2017) under the assumption of parameter shar-
ing across agents (Gupta et al., 2017), although
the general framework is agnostic to the specific
RL training algorithm. For this matter, we take
the centralized learning, decentralized execution

paradigm, which is already popular in multi-agent
reinforcement learning for decentralized systems
(Everett et al., 2019; Lowe et al., 2017). In par-
ticular, the individual policy shared by all agents
is learned in a centralized way from the experi-
ences gathered by all robots simultaneously during
training. This has been shown to allow the poli-
cies of homogeneous agents to be trained more
efficiently, and mitigate the non-stationarity in
the environment dynamics that arises from having
multiple agents learning at the same time. While
testing, each robot has copy of the learned policy
which is executed in a decentralized fashion.

Algorithm 1 describes the proposed training
strategy which alternates between gathering expe-
riences (zti, π

t
i , R(x

t
i, π

t
i), z

t+1
i) from all robots and

performing PPO gradient updates. PPO is an on-
policy method that addresses the high-variance
and the difficult hyper-parameter tuning in policy
gradient methods for continuous control problems.
As suggested in Schulman et al. (2017), in this par-
ticular PPO implementation (Liang et al., 2017),
we add to the surrogate objective an entropy
bonus and a value function loss to ensure sufficient
exploration and account for the shared parame-
ters between the policy and the value function. We
refer the reader to Schulman et al. (2017) and Fan
et al. (2020) for more information on the method’s
equations and details. The hyperparameters used
for training are detailed in table 1.

As explained in Fan et al. (2020), this multi-
robot adaptation of the PPO algorithm can be
parallelized and easily scaled to large-scale multi-
robot systems since every robot counts as an
independent worker gathering data. This reduces
the sampling time cost and makes the algorithm
suitable for training a large number of robots
in various scenarios, profiting from frameworks
specialized in distributed computation (i.e. Ray
(Moritz et al., 2018) and RLlib (Liang et al.,
2017)) to accelerate our network’s convergence.

4.3.2 Training scenarios

While proper exploration of the action and state
spaces is crucial for the quality, robustness and
generalization characteristics of the learned com-
munication policy, it is difficult to achieve proper
exploration of the state space since our policy only
decides on whom to communicate with. Therefore,

Springer Nature 2021 LATEX template

Article Title 11

Algorithm 1 PPO for multiple agents with parameter sharing

1: Initialize policy network πθ and value function Vϕ. Set hyper-parameters as shown in Table 1. Note
that θ and ϕ share the same set of parameters except for the decoder layer.

2: for iteration = 1,2,..., do
3: for Robot i = 1,2,...,n do
4: // Collect data in parallel. We define rti = Ri(x

t
i, π

t
i)

5: for e = 1,2,...,ne do
6: Run comm. policy πθ for episode e, collecting {zti, rti , πt

i} where t ≤ Te (Algorithm 2)
7: Estimate and collect advantages using GAE (Schulman, Moritz, Levine, Jordan, & Abbeel,

2016): Ât
i =

∑Te−t
l=0 (γλ)lδt+l

i where δti = rti + γVϕ(z
t+1
i)− Vϕ(zti)

8: Estimate and collect target values: V t
target(x

t
i) =

∑Te

t′>t γ
t′−trt

′

i

9: end for
10: end for
11: πold ←− πθ
12: //Update policy and value function
13: for j = 1,...,Eπ do
14: for b = 1,...,(neTen)//nminibatch do
15: Sample minibatch Db from collected rollout data D

16: //Surrogate objective. We define: hit(θ) =
πθ(π

t
i |z

t
i)

πold(πt
i |zt

i)

17: LO(θ) = E(zt
i,r

t
i ,π

t
i ,V

t
target(x

t
i),Â

t
i)∼Db

[min(hit(θ)Â
t
i, clip(h

i
t(θ), 1−ϵ, 1+ϵ)Ât

i)+βKL[πold | πθ]]
18: //Value function Loss
19: LV F (ϕ) = E(zt

i,r
t
i ,π

t
i ,V

t
target(x

t
i),Â

t
i)∼Db

[(V t
target(x

t
i)− Vϕ(zti))2]

20: //Entropy objective. We define S[πθ](z
t
i) as the entropy of the policy distribution πθ(π

t
i | zti)

21: LS(θ) = E(zt
i,r

t
i ,π

t
i ,V

t
target(x

t
i),Â

t
i)∼Db

[S[πθ](z
t
i)]

22: //Total PPO objective
23: LPPO(θ, ϕ) = LO(θ)− c1LV F (ϕ) + c2L

S(θ)
24: Update policy param. θ with lrθ by Adam (Kingma & Ba, 2015) with respect to LPPO(θ, ϕ)
25: end for
26: end for
27: //Adapt KL penalty coefficient
28: if KL[πold | πθ] > 2KLtarget then
29: β ←− 1.5β
30: else if KL[πold | πθ] < 0.5KLtarget then
31: β ←− β/2
32: end if
33: end for

it is necessary to design interaction-rich training
scenarios where the robots can sample meaningful
experiences that will allow them to learn when it
is necessary to cooperate and request other robots
future trajectory intentions.

We have created a simulation environment
(Zhu & Alonso-Mora, 2019b) where a group of
twelve drones navigate from an initial position to
a goal position and may communicate their tra-
jectory plans to perform collision avoidance. We
have designed three different scenarios to train our

communication policy, as depicted in the left col-
umn of Figure 3. Each scenario requires increasing
levels of interaction and cooperation to perform
collision avoidance, ranging from a simple scenario
where almost no communication is needed (e.g.,
Figure 3a) to complex scenarios where the drones
must communicate (e.g., Figure 3c) to successfully
avoid each other. The employed scenarios are:

• Random navigation (Figure 3a): Each
robot must to move to a random goal position.

Springer Nature 2021 LATEX template

12 Article Title

Table 1: Hyperparameters for PPO training algo-
rithm

Parameter Value
Lambda λ 1.0
Gamma γ 0.99

Episodes each iteration ne 40
Episode time steps/episode Te 100

Number of epoch per iteration Eθ 30
SGD minibatch size nminibatch 512

Clip param. ϵ 0.3
KL target KLtarget 0.01
Learning rate lrθ 5e-5

KL coeff. β 0.2
Value function loss coeff. c1 1

Entropy loss coeff. c2 0.001
Gradient Clipping 0.1

• Random swapping (Figure 3c): The group
of robots is arranged in pairs. Then each robot
switches position with its counterpart.

• Asymmetric swapping (Figure 3e): We
split the R2 x-y plane into twelve quadrants
and randomly initialize each robot in a different
quadrant with random initial position. Then,
each robot swaps positions with a robot from
the diametrically opposed quadrant.

The learned communication policy depends on
the scenarios on which it is trained. For instance,
if an agent is trained only on the first scenario
it will learn a no communication behavior. In
contrast, if only trained in the last one, it may
learn to always communicate. Hence, we employ
curriculum learning (Bengio, Louradour, Col-
lobert, & Weston, 2009), training the agents first
in a simple scenario, where communication is
generally not needed, and subsequently introduc-
ing more difficult and complex scenarios where
the agents must learn when and with whom to
communicate. We design the learning process in
three stages of 12500 episodes, through which we
sample episodes from a scenario pool. During the
first stage the scenario pool only has the first
type of scenario, thus we sample random naviga-
tion scenarios with probability one. In the second
step, we add the second type to the scenario pool,
sampling the new scenario 75% of times. Finally,
during the last stage we add the asymmetric
swapping type to the pool, sampling this one 75%
of times and 12.5% each of the others.

4.3.3 Training/Test regime
differentiation

As explained in section 4.3.2, the learned commu-
nication policy cannot explore directly the state
space since only the MPC is in charge of motion
planning. Also, communication is not the only
source of cooperation as the other robot’s trajec-
tory intentions can be approximated by constant
velocity models. This results in our robots rarely
exploring collisions or dangerous situations even
when not communicating, thus creating sparsity
and a lack of collision experiences to learn from.
On top of this, while all communications are pun-
ished instantaneously when they happen, there is
a delay between issuing a communication request
(or not) and its associated reward for completing
the episode successfully (or colliding).

We apply a crucial change between the train-
ing and testing regimes to promote exploration of
the state space, specially collision events. During
training, we turn off constant velocity predic-
tions whenever robot i does not communicate with
robot j to request its trajectory intentions. This
makes robot i MPC planner virtually blind to
robot j future intended positions. This will ulti-
mately result in a learnt communication policy
that keeps track and decides to request trajec-
tory intentions from all robots that might put the
safety of our future trajectory at risk, or need to
be cooperated with. As seen in section 5.6.3, this
modification results in an efficient and intuitive
communication policy that is as safe as broadcast-
ing policies. During testing, we turn on once again
trajectory estimations whenever there is no com-
munication both as a safety layer and to avoid
generating oscillating trajectories due to switch-
ing on and off constraints related to other robots’
future trajectories in the MPC.

The main idea of turning robot i blind to robot
j whenever it does not request j’s trajectory inten-
tions, is to force collisions to happen whenever
necessary communications are not effectuated.
This way, it is easier to discriminate and learn the
cause and effect relationship between a communi-
cation signal being (not) triggered between i and j
and their subsequent collision (not) being avoided.
The intuition behind this training approach is to
learn with whom to cooperate rather than with
whom to communicate as it results in a policy that
puts the attention in those other robots in the

Springer Nature 2021 LATEX template

Article Title 13

team that need to be cooperated with to achieve
safe navigation. Although less information for the
motion planner during training results in a subop-
timal policy for testing, i.e. more communicative
than necessary, we argue that the additional infor-
mation can help in some situations and, at worst,
will not make the resulting policy less safe. This
is why the found solution is able to achieve simi-
lar performance to broadcasting policies in terms
of safety. The robot motion planning loop during
training and testing are detailed in Algorithm 2.

4.4 Predicting and Generating Safe
Trajectory Intentions

4.4.1 Informed constant velocity
estimations

At time step t, robot i can obtain T̂j|i either by
communicating and requesting robot j’s future
trajectory intention (T̂ t

j|i = T t−1
j) or directly by

computing an estimation of said trajectory inten-
tions (T̂ t

j|i = prediction(xt
j)). Algorithm 3 depicts

the structure of the prediction function.
Whenever robot i requests robot j’s trajec-

tory intentions at time step t, it stores both the
last communicated trajectory T t−1

j and the time
step of communication t. Every subsequent time
step t + k, we make sure the last communicated
trajectory is not obsolete, and that robot j is
within a predefined tolerance region around its
trajectory intention rtol. If any of these conditions
is not true, the last communicated trajectory is
discarded and robot j’s future positions are esti-
mated by assuming it will follow constant velocity.
If the communicated information is not discarded,
we take the remaining N − 1 − k steps from the
tail of the communicated trajectory, and expand
them until obtaining a set of N future positions by
assuming constant velocity.

4.4.2 Generating safe trajectory
intentions

At time t, given robot i’s requests for informa-
tion πt

i , we can determine T̂ t−1
j|i . Then, robot

i’s computed trajectory intentions T t
i and con-

trol inputs ut
i are computed by solving a con-

strained optimization problem. This optimization
problem computes the optimal future values for
{(xt+l+1

i ,ut+l
i) | ∀l = 0, ..., N − 1}, that min-

imize, over a N-time step horizon, a given cost

Algorithm 2 WW2C framework

1: Inputs: Number of robots n. Starting
and goal positions and initial velocities:
{p0

i ,pi,g,v
0
i },∀i ∈ I. Training/Testing com-

munication policy. n number of robots.
Episode length: Te. Maximum velocity: vmax.

2: Initialize n robots in their initial posi-
tions and velocities. Copy an instance of the
learned/still in training communication policy
πθ to all robots.

3: Initialize within each robot a set of last com-
municated trajectories {Dj}j ̸=i. Obtain the
first observation of the environment {z0i }i∈I

4: for time step t = 0,1,...,Te do
5: for robot i = 1,2,...,n do
6: //Compute πt

i = {ctj|i}j ̸=i

7: if training then
8: πt

i ∼ B(πθ(zti))
9: else

10: πt
i = 1[πθ(z

t
i) > 0.5]

11: end if
12: //Compute T̂ t−1

j|i
13: for robot j ̸= i, i = 1, ..., n do
14: if ctj|i == 1 then

15: //Traj. intention requested
16: T̂ t−1

j|i = T t−1
j

17: Dj ←− T t−1
j

18: else if not training then
19: //Traj. int. predicted (alg. 3)
20: T t−k−1

j ←− Dj , k > 0

21: T̂ t−1
j|i = pred(T t−k−1

j ,vt
j ,p

t
j)

22: else
23: T̂ t−1

j|i = ∅
24: end if
25: end for
26: {T t

i ,u
t
i} ←− Solve eq.11 with gi = pi,g

27: end for
28: {zt+1}i∈I ←− Step({ut

i}i∈I)
29: end for

function (defined in Appendix B). The solution of
the problem is constrained to follow the robot’s
dynamic model f and account for the estimates
of other robots’ trajectory intentions T̂ t−1

j|i to

avoid future collisions (equality and inequality
constraints). The sequence of intended future posi-
tions in {xt+l+1

i | ∀l = 0, ..., N − 1} is used to
construct T t

i , while only the first value of the
sequence {ut+l

i | ∀l = 0, ..., N − 1}, ut
i, is used.

Springer Nature 2021 LATEX template

14 Article Title

Table 2: Hyperparameters for the WW2C frame-
work

Parameter Value
Episode length Te 100

Trajectory prediction horizon N 20
Time step length ∆t 0.05s
Tolerance length rtol 0.1m

The sequence {(xt+l+1
i ,ut+l

i) | ∀l = 0, ..., N −
1} is computed at every time step t by formulating
and solving the following constrained optimization
problem:

min
x0:N
i ,u0:N−1

i

N−1∑
k=0

Jk
i (x

k
i ,u

k
i) + JN

i (xN
i ,gi)

s.t. x0
i = xt

i,

xk+1
i = f(xk

i ,u
k
i),∥∥∥pk+1

i − p̂k+1
j|i

∥∥∥ ≥ 2r, ∀j ∈ I\{i}

uk
i ∈ U , xk+1

i ∈ X ,
(11)

where p̂k+1
j|i are extracted from T̂ t−1

j|i . Jk
i (x

k
i ,u

k
i)

and JN
i (xN

i ,gi) are the stage and terminal cost
functions to be minimized, which are defined in
Appendix B. Function f is the non-linear discrete
function representing the dynamic model of the
robot.

5 Simulation Experiments

In this section we first describe our implementa-
tion of the proposed method. Next, we provide a
thorough evaluation of our learned communication
policy by comparing it with our previous approach
(Serra-Gómez et al., 2020) and other commu-
nication baselines in several scenarios requiring
increasing cooperation efforts to navigate safely.
A video demonstrating the results of this paper is
available (see Extension 1).

5.1 Training Setup

We train our communication policy for a team
of twelve quadrotors moving in R3 and following
Parrot Bebop 2 dynamics. We rely on the solver
Forces Pro (Domahidi & Jerez, 2014) to gener-
ate optimized NMPC code and its corresponding
Python wrapper. As in Zhu, Juhl, Ferranti, and
Alonso-Mora (2019), the time step used in the

NMPC is 0.05s and the prediction horizon is N =
20 (1 second ahead). The constraints are formu-
lated as soft-constraints to ensure the feasibility of
the problem, and the solver iterations have been
limited to 600 to have at least a control frequency
of 20 Hz. Note that the framework is agnostic to
the choice of solver as long as it allows a con-
trol frequency of 20 Hz. The learning algorithm
and the training of our policy were implemented
in Tensorflow, using the RLlib framework (Liang
et al., 2017). The Critic and Actor models fol-
low the architecture shown in section 4.2 and
were trained for 37200 episodes using an Intel
i9-9900 CPU@3.10GHz computer. The hyperpa-
rameters used for training are explained in the
Table 1. The simulation time step is set to 0.05s,
which is the robot’s control period. The quadro-
tors’ dimensions are represented by a sphere of
radius r = 0.3m and their maximum speed is
vmax = 4.25m/s. Computing both the communi-
cation policy and the MPC control inputs takes
less than 0.01s per robot for each time step, which
allows for a real-time implementation of the frame-
work with a control and communication frequency
of 20Hz. No noise is added into the simulation
environment during the training process, in order
to optimize the policy with low variance. Values
for the reward weights were wg = 10, wcoll = 10,
wc = 10. Tuned reward and penalty terms were
rg = 1, rcoll = 1 and Ni(n) = 100(n − 1). Goal
reward is only received once during the episode.
Episodes are finished after reaching 100 time steps
or when all agents reach the goal.

5.2 Baselines

We introduce and compare our method with four
other commonly used heuristic communication
policies:

• Full communication (FC): At each time step
each robot broadcasts its trajectory plans.

• No communication (NC): The robots never
exchange their trajectory plans and a Constant
Velocity model is used by each robot to infer
the others trajectories.

• A distance-based communication policy (ϵ-
DBCP): If the distance between two robots
distance is smaller than a threshold ϵ (in meters)
then the agents broadcast their trajectory infor-
mation. ϵ ∈ {4.25m, 8.5m}, which is once and

Springer Nature 2021 LATEX template

Article Title 15

Algorithm 3 Informed constant velocity estimator of robot j

1: Inputs: Last communicated trajectory at time step t− k: T̂ t−k−1
j|i , j’s current velocity and position:

pt
j vt

j . Hyperparameters in table 2.
2: reject = 0
3: if k ≥ N − 1 then
4: reject = 1

5: else if
∥∥∥T̂ t−k−1

j|i (k)− pt
j

∥∥∥ > rtol then

6: reject = 1
7: end if
8: if reject then
9: T̂ t−1

j|i = {p̂t+l
j | p̂t+l+1

j = p̂t+l
j +∆tvt

j , l = 0, ..., N − 1; p̂t
j = pt

j}
10: else
11: //Expand the tail of the last communicated trajectory. Note that we consider: T̂ t−k−1

j|i (0) = pt−k−1
j

12: Tail = {p̂t+l
j | p̂t+l

j = T̂ t−k−1
j|i (k + 1 + l), l = 0, ..., N − k − 2}

13: stepcte v = T̂ t−k−1
j|i (N − 1)− T̂ t−k−1

j|i (N − 2) //Cte. velocity step at the end of the tail

14: T̂ t−1
j|i = Tail∪{p̂t+l

j | p̂t+l+1
j = p̂l

j+stepcte v; l = N−k−1, ..., N−1; p̂t+N−k−2
j = T̂ t−k−1

j|i (N−1)}
15: end if
16: return T̂ t−1

j|i

twice the maximum distance within planning
horizon, respectively.

Full communication and no communication
policies give us a reference on what are the
expected maximum and minimum performances
in terms of safety and communication requests. On
the one hand, since full communication policies
allow each robot to request trajectory intentions
from all robots at every time step, we can con-
sider it to be an over-conservative communication
policy. Thus, if safe navigation is not achievable
by applying full communication in a particular
sampled episode, we can consider that it is diffi-
cult to find a better communication policy that
can achieve collision avoidance for this particu-
lar configuration of robot initial positions and
goals. On the other hand, no communication poli-
cies provide a reference on the expected minimum
performance of the framework when only con-
stant velocity estimations are used to predict other
robots trajectory intentions. Other baselines (ϵ-
DBCP) give us a sense of our learned method’s
efficiency and safety in comparison with hand-
crafted, reasonable and strong heuristics. The
MPC motion planner is implemented with the
same parameters for all baselines.

5.3 Testing Scenarios

To evaluate and compare our method with the
baselines we design scenarios where we can evalu-
ate how communication policies adapt to different
levels of interaction. Therefore, aside from the sce-
narios used for training (see Sec. 4.3.2), we define
three additional ones:

• Rotation (Figure 3b): All drones are
arranged in a circle and must rotate one posi-
tion either clockwise or counter-clockwise. This
is a control scenario where no communication
should be necessary. Therefore it allows us to
evaluate the adaptability and communication
efficiency of the policy.

• Group swapping (Figure 3d): We arrange
the twelve drones in two groups of six symet-
rically opposed. Then, each drone must swap
positions with its symmetrical counterpart.

• Symmetric swapping (Figure 3f): All
drones are arranged in a circle in symmetri-
cally opposed initial positions and swap places
with the opposite drone. As with the asym-
metric swapping scenario, communication is
required for all drones to ensure collision-free
trajectories.

All scenarios used for evaluation are depicted
in Figure 3.

Springer Nature 2021 LATEX template

16 Article Title

(a) Random navigation (b) Rotation

(c) Random swapping (d) Group swapping

(e) Asymmetric swapping (f) Symmetric swapping

Fig. 3: Simulation results for each scenario using
our communication policy. The three figures on
the left show the scenarios used for training while
the three on the right are the ones used for testing.
Solid lines represent the trajectories executed by
the drone-swarm. Yellow represents the positions
where the drones communicate their trajectory
plans. Blue depicts the positions where the drones
do not communicate. Green and Red represent
the initial and goal position of each drone, respec-
tively. Increasing opacity represents the episode
progression.

5.4 Performance Evaluation

We evaluate the performance of the proposed
learned collision-avoidance policy in terms of its

(a) Evolution throughout training of the learned policy’s
number of communication requests.

(b) Evolution throughout training of the learned policy’s
collision rate. Since the y-axis is in logarithmic scale, the
0 value is represented by 10−3.

Fig. 4: Policy evolution throughout the training.
We train three seeds and evaluate them every 400
training episodes for 100 episodes. We show the
evolution of the mean and standard deviation of
their performance in each of the presented scenar-
ios. Communication requests are normalized by
the results that would be obtained for the full com-
munication policy. We use the results obtained for
the full communication policy to normalize the
number of communication requests of the learned
policy between [0,1].

safety and communication efficiency. We present
multiple performance metrics and then compare

Springer Nature 2021 LATEX template

Article Title 17

(a) Proportion of episodes with at
least one collision in each scenario.

(b) Number of communication
requests in each scenario.

(c) Time steps needed to reach the
goal in each scenario.

Fig. 5: Performance evaluation for each scenario of the communication baselines and our learned policy.
For our trained policy, we run three seeds and take their average performance and standard deviation.
We run each method for 1000 episodes, gathering results for each metric. For collision rates, we show the
proportion of episodes where we obtain at least one collision. For communication requests and number of
time steps, we show the results for those episodes without collisions. In case none of the sampled episodes
end without collisions, no bar is shown for that policy.

our method with the indicated baselines. The
metrics are:

• Collision rate: Proportion of episodes where
there has been a collision between any of the
robots in the team.

• Number of communication requests along the
episode: Total number of communication
requests throughout the episode. In determinis-
tic scenarios, where we are certain of the low or
high need for cooperation, this metric will allow
to discern the adaptability of each model.

• Time to achieve the goal: Number of time steps
needed to reach the goal. Failed episodes, where
a collision has happened, are not accounted
for when computing the mean and standard
deviation.

Fig 4 shows the evolution of the learned policy
throughout training in terms of average collision
rate and number of communication requests for
all scenarios. To account for the effect of different
network initialization seeds into the final learned
policy, we train three different initialization seeds
and show the average and standard deviation of
their performance in all our evaluations.
We normalize our results in communication
requests between [0,1] using those obtained for the
full/no communication policies for the same sets
of sampled episodes for each scenario since this
gives us a reference on the maximum/minimum

values that we can score in both metrics. We can
see that our method is able to learn an adaptable
policy that makes close to no requests in sim-
ple settings such as Rotation, Random navigation
and Random swapping scenarios while marginally
affecting the number of collisions obtained in more
difficult settings such as Group swapping, Asym-
metric and Symmetric swapping scenarios. We
can observe that our learned policy can adapt to
the different amounts of communication that are
required to achieve safe navigation. Note how at
the end of training, the collision rate decreases
drastically.

Figure 5 compares the learned communication
policy against the proposed baselines using these
metrics. The scenarios are ordered according to
their levels of interaction. The results obtained
for the no communication policy show correla-
tion between the different complexity in scenarios
and the need for communication. As shown in
Figure 5a, the collision percentage of our method
(WW2C) is the same or very similar as all other
conservative baselines in all scenarios (0.4% differ-
ence at most). Even in the most complex scenarios,
such as asymmetric swapping , we show that the
difference in collisions is not significant in com-
parison with the safest communication policy:
full communication. The clear advantage of our
method is illustrated in Figure 5b, where WW2C
shows better results by communicating less than

Springer Nature 2021 LATEX template

18 Article Title

50% and 30% in comparison with 4.25m heuris-
tic and the full communication in the worst cases.
We show that the learned policy can adapt better
to scenarios of different complexities since there
is also a clear correlation between the amount of
communication requested at each scenario and the
expected need for cooperation shown in Figure 5a.

Due to our setup not allowing our drone to
stop instantaneously, it will collide rather than
run into deadlocks. Therefore, the success rate for
any method is equivalent to one minus its collision
rate. We show that the learned communication
policy still manages to succeed in practically all
scenarios with little effect in the time it needs to
achieve the goal in comparison with the baselines.
Our reward function accounts for achieving the
goal only at the end of the episode. This is due
to our main priority being to decrease the amount
of communication while maintaining safety and
avoiding deadlocks. We find that, although our
reward function does not motivate achieving the
goal as fast as possible, the sacrifice in terms of
additional time steps is not significant.

5.5 Robustness and Zero-Shot
Generalization Capabilities

Our approach allows to obtain a policy that
is capable to generalize to an arbitrary number
of robots in the environment, and to scenar-
ios requiring different levels of interaction.Thus,
we demonstrate the generalization of the learned
communication policy with a series of experi-
ments.

5.5.1 Lower/Larger scale multi-robot
systems

We evaluate the performance of our method
trained with 12 agents, on scenarios with a high-
er/lower number of agents. More specifically, in
Figure 6, we show the obtained results from simu-
lating 6,12,18 and 24 robots in each of the training
and testing scenarios for 1000 episodes in com-
parison to the performance shown by the full
communication policy under the same conditions.

We show that our method is able to commu-
nicate at least 70% less in comparison with the
full communication policy, while still being capa-
ble to adapt to scenarios requiring different levels

of interaction. Note that the normalized com-
munication requests for each scenario does not
change significantly with the number of agents,
even showing a decreasing tendency when scaling
up to 24 agents. This indicates that our commu-
nication policy generalizes well to environments
with additional agents.

Regarding the obtained collision rates, our
method generalizes well and shows better results
when there are less robots in the environment.
There is a degradation of performance when the
number of agents in the environment is higher
than seen during training. However, the degra-
dation obtained for our method is low (i.e., less
than 2% for 18 agents, and less than 10% for
24 agents) and is similar to the degradation seen
when using full communication for the same num-
bers of agents.

5.5.2 Noisy positions and velocities

We also evaluate the robustness of our commu-
nication method under different levels of noisy
inputs. We add a multiple of a gaussian noise
to the other agents’ relative positions and veloc-
ities in our observation vector zti to simulate the
effects of sensor measurement errors and localiza-
tion uncertainties on our learned communication
policy. The added measurement noise is zero mean
with covariance: Σ = diag(0.06m, 0.06m, 0.06m)2.
We simulate 1000 episodes for each scenario under
three levels of noise: Σ, 2Σ, 4Σ. In figure 7, we
show that our method is robust to these differ-
ent levels of the added measurement noise since
both performance and behaviour in terms of col-
lision rates and communication requests suffer
non-significant changes. In fact, note how the col-
lision rates for each level of noise remains very low
(> 1%) and similar to the other results.

5.6 Ablation Study

We analyse the key design choices we have intro-
duced in this paper in comparison to Serra-Gómez
et al. (2020). Two main changes that we introduce
are a model architecture that is able to function
with an arbitrary number of robots, and a differ-
ence in conditions between training and testing
regimes to obtain more robust and adaptable com-
munication policies. Overall, these two changes
allow to learn policies that can decide better when
and with whom to communicate. We also changed

Springer Nature 2021 LATEX template

Article Title 19

(a) Collision rate over each scenario
for full communication policy.

(b) Collision rate over each scenario
for our method.

(c) Normalized number of communi-
cation requests over each scenario.

Fig. 6: Results obtained when testing the full communication and our policy with 6, 12, 18 and 24 drones.
Our method has been trained with 12 drones. Showed communication requests are have been scaled using
the mean communication requests of the full communication policy under each scenario/number of agents.

the reinforcement learning algorithm from MAD-
DPG (Lowe et al., 2017) to PPO (Schulman et
al., 2017) with parameter sharing (Gupta et al.,
2017). This was necessary as MADDPG requires
one state-action value function per agent, which
scales badly with the number of agents and tends
to learn specialized agent roles that are situ-
ation specific. PPO, on the other hand, only
requires one state-value function for all agents and
can learn the same communication policy for all
agents using parameter sharing as well, avoiding
over-specialization to specific scenarios.

We perform an ablation study to justify the
modifications applied to the previous approach
(Serra-Gómez et al., 2020). First, we will
address the implementation of a targeted scalable
attention-based architecture to encode the infor-
mation of the dynamic environment. Second, we
will empirically justify our decision of disabling
informed constant velocity estimations whenever
there’s no communication during training.

5.6.1 Evaluation metrics and output
models

We compare the different ablations across the
same scenarios mentioned in section 5.4 showing
the evolution of their training according to the
following metrics (sorted in descending priority
order):

• Collision rate: Defined in section 5.4.
• Number of communication requests: Defined in
section 5.4.

Similar to our method in section 4.2, each
ablated communication policy outputs a normal-
ized 2-dimensional vector [pj|i, 1 − pj|i] for each
other robot j. This vector represents a Bernoulli
distribution B(pj|i). The communication policy is
stochastic if it samples such distribution to decide
whether to request robot j’s trajectory intentions
(cj|i ∼ B(pj|i)). The policy is deterministic if it
decides to communicate by comparing the mean
of the distribution to a predetermined thresh-
old (ctj|i = 1[pj|i > 0.5]). For fair comparison,
we evaluate every ablation both as a stochas-
tic and deterministic policy and show the one
obtaining the best performance across all different
evaluation scenarios.

5.6.2 Scalable attention-based
architecture

One of the main limitations of our previous
approach (Serra-Gómez et al., 2020) is its diffi-
culty to scale to multi-robot teams larger than
four quadrotors, let alone react to an arbitrary
number of robots in the environment. Similar to
Everett et al. (2019) and Kurin et al. (2020), in
this work we address this challenge by incorporat-
ing three layers of transformer blocks into the core
of the network architecture to encode the environ-
ment, which allows to provide a communication
action for an arbitrary number of other robots.
In Figure 8, we compare our approach with two
ablated versions.

Springer Nature 2021 LATEX template

20 Article Title

(a) Collision rate over each scenario.

(b) Number of communication requests over each sce-
nario.

Fig. 7: Results obtained when testing our policy
in presence of noise of the observed robot’s posi-
tions and velocities. Standard deviations are taken
over the results taken when evaluating 3 seeds of
the trained policy over 1000 episodes.

Ablated architecture 1 concatenates all the
encoded vectors from other robots and substi-
tutes the transformer block by three 64 neuron
fully-connected layers with a ReLu activation. The
decoder layer maps the resulting hidden layer to
a vector of 2(n − 1) communication scores. This
ablated version cannot be used for a different
number of agents than in training. The aim of
this ablated version is to showcase the benefits
of using each other drone individual information
while using attention mechanisms to encode the

(a) Collision rate

(b) Number of communication requests

Fig. 8: Performance evaluation over the ablated
versions presenting different policy architectures.
We add the performance of our own method for
comparison. Standard deviations are taken over
the results taken when evaluating 3 seeds of each
trained policy over 1000 episodes.

state of the environment and compute each com-
munication signal. In Figure 8, we show that
the architecture used in this work is able to
scale better to larger multi-robot systems both in
terms of collision rate and number of communi-
cation requests across episodes. These results also
remark the importance of precise communication.
A higher amount of communication requests do
not necessarily translate to a safer communication
policy.

Springer Nature 2021 LATEX template

Article Title 21

Ablated architecture 2 also replaces the trans-
former block with three fully-connected layers
of 64 neurons with ReLu activation functions.
However, it processes each robot’s information
individually to decide whether to communicate or
not. This network solves a simpler problem than
the precedent ablated version since it learns to
communicate with another other robot by only
considering the information on its distance, rela-
tive position and velocity. Surprisingly, Figure 8
shows that this second ablation performs similar
to our attention-based architecture. The intuition
behind these results is that, at least in the tested
scenarios, the individual relative information of
every other robot contains most of the information
that is relevant to decide whether to communi-
cate with it or not. Although our method seems to
result in slightly less collisions in all scenarios, we
cannot draw a solid conclusion on this since the
performance is not significantly different. In fact,
while it is logical that there should be situations
where the attention module would add a clear
advantage over the pairwise communication abla-
tion, it seems difficult to identify and reproduce
these scenarios.

5.6.3 Training-test environment
separation

As explained in section 4.3.3, distinction between
test and training regimes was applied to increase
the amount of collision experiences and increase
the causality between lack of communication and
collision events. The result of doing this is an effi-
cient learned communication policy that is able to
adapt to different scenarios with variating levels
of interaction and still be practically as safe as full
communication policies.

However, it could be unclear whether the
same results could still be achieved by finding
the right weighting trade-off between collision
event and communication event penalizations.
To verify this, we modify the reward function
by adding a weighting variable ρ, as shown in
Equation 12, and attempt to fine-tune it by train-
ing three models under different values for it:
ρ = {0.98, 0.90, 0.50}. Informed constant velocity
estimations are enabled during training. Note that
ρ = 0.5 results in the original reward function
proposed in section 4.1.4.

(a) Collision rate

(b) Number of communication requests

Fig. 9: Performance evaluation over the ablated
versions trained while enabling the prior informa-
tion predictions. We add the performance of our
own method for comparison. Standard deviations
are taken over the results taken when evaluating
3 seeds of each trained policy over 1000 episodes.

Ri(x
t, πt

i) = wgRg,i(x
t)

+ 2ρwcollRcoll,i(x
t) + 2(1− ρ)wcRc,i(π

t
i)
(12)

The values of ρ were chosen to showcase how
difficult and counter-intuitive it is to properly bal-
ance communication and collision penalties when
the training and test environment are the same.
Rather than a wide range of parameters, Figure 9
shows which values of ρ are necessary to obtain

Springer Nature 2021 LATEX template

22 Article Title

a policy that matches ours in terms of collision
rates (ρ = 0.98), communication requests (ρ =
0.90), and what happens when we balance both
objectives equally (ρ = 0.50).

In Figure 9, we compare our method with
different versions of the ablated model trained
under the given different values for ρ. Increas-
ing the value of the ρ hyperparameter results in
learning more conservative communication poli-
cies that make more communication requests to
navigate more safely. We can argue that fixing
such value around ρ = 0.90 yields similar perfor-
mance to our method as it is just slightly lower
in terms of communication requests in the most
complex training scenario: Asymmetric swapping.
However, we show crucial differences in terms of
fine-tuning difficulty, adaptability and reliability
of the learned policy. In rotation scenarios, we
should learn to decrease communications as no
interaction is needed to perform safe navigation in
this setting.

Note how the value of ρ has high impact on
the converged policy for the ablated versions. In
particular, their collision rate and overall commu-
nication amount throughout all scenarios variate
greatly as shown in Figure 9. In contrast, our
method allows us to decrease the number of com-
munications while hardly compromising safety by
just applying a simple modification.

Additionally, ablated versions fail to adapt to
different scenarios. Policies trained with high val-
ues for ρ (≥ 0.90) tend to over-communicate,
requesting other robots’ trajectory intentions even
when both of them are not moving. Instead,
for lower values of ρ (≤ 0.90 and specially ≤
0.50), learned policies tend to under-communicate
as they rely too much on the predicted trajec-
tory intentions which compromises their collision
rate. In particular, a balanced value of ρ = 0.5
that equally punishes collisions and communica-
tion already results in close to 0 communica-
tion requests and high collision rates. We won’t
get any further interesting results from lower
ρ values since that would mean a policy even
closer to the no communication policy baseline.
Enabling informed constant velocity estimations
during training results in learned policies that
leverage how much they can rely on informed con-
stant velocity estimations. In practice, this means
that we have a stochastic policy that controls
the expected frequency of trajectory intention

requests. While it is another valid strategy, it
lacks adaptability and is less reliable and intu-
itive in complex scenarios. This explains why
policies trained under high values for ρ tend to
overcommunicate in all scenarios (Figure 9).

6 Real Experiments

In this section, we demonstrate that our com-
munication policy learned through reinforcement
learning in simulation can be deployed on physical
quadrotors (see also Extension 2). In the following
subsections, we first briefly introduce the hard-
ware setup of our framework. Then, we present
the multi-robot scenarios used for evaluation.

6.1 Hardware Setup

As in Zhu and Alonso-Mora (2019b), our experi-
mental platform is the Parrot Bebop 2 quadrotor.
The radius of each quadrotor is set as 0.30m in
the MPC. An external motion capture system
(Optitrack) is used to measure the pose of each
quadrotor, which provides an estimated pose for
each quadrotor. We then use an UKF to esti-
mate the state of quadrotors (Zhu & Alonso-Mora,
2019b). We use an Intel i7 CPU@2.6GHz com-
puter for the communication policy and planner
and use Robot Operating System (ROS) to send
commands to the quadrotors. The communication
policy and the NMPC configurations are explained
in section 5.1.

6.2 Multi-Robot Scenarios

In this section, we design three scenarios to
validate that the behaviors learnt in simulation
during training (Figure 3) can be reproduced in
real multi-drone teams. These experiments have
been designed to showcase the adaptability of
the communication policy to different amount of
drones and to motion planning tasks requiring
different amounts of interaction.

First, in Figure 10a we let two drones follow
parallel trajectories (analogous to the rotation
scenario in 2-drone settings) to verify that the
learned communication policy does not commu-
nicate when it is not necessary. Additionally, we
let them swap positions (Figure 10b) to demon-
strate that two robots can reliably avoid each

Springer Nature 2021 LATEX template

Article Title 23

(a) Parallel trajectories (b) Swapping positions (2 drones) (c) Swapping positions (3 drones)

(d) Number of communication requests

Fig. 10: Validation of our trained policy in real experiments.

other using this framework and to verify the
adaptability of our learned communication pol-
icy to different situations along the episode (i.e.
they do not communicate unless needed to avoid
collisions). Finally, we add a third robot to the
environment and let them perform the swapping
scenario (Figure 10c). Note that the communica-
tion policy is the same for all robots and does not
need retraining when their number changes.

In Figure 10d, we plot the minimum distance
among drones and the number of communications
registered along these three scenarios. We show
that in all three cases, our framework manages to
avoid collisions with a minimal number of com-
munication requests, and to adapt to a different
number of robots without retraining or tuning

the parameters from the NMPC.

To show the relationship between communi-
cation requests and distance holds even in real
environments, we perform 9 swapping experiments
with two drones (Figure 10b) while keeping record
of the distance between them and the number
of communications. Although there are overlaps
among the distance distributions, the box plot
in Figure 11 shows a clear relationship between
the distance between drones and the number of
communications. Note that the outliers in the
0-communication distribution and the overlaps
between boxes could be due to the fact that the
learned communication policy does not behave
symmetrically in space. As seen in Figure 11, this
means that the two drones do not necessarily com-
municate at the same time and does not behave

Springer Nature 2021 LATEX template

24 Article Title

equally before and after the intersection (Figure
10d). Our results show therefore that the proposed
learned communication strategy allows physical
quadrotors to navigate tight situations with lower
communication requests to avoid collisions.

7 Conclusions

In this paper, we have introduced an efficient
communication policy integrating the strengths of
MARL and NMPC in collision avoidance tasks.
Simulation results show that our policy learns
when and from whom to request planned tra-
jectories to successfully avoid collisions. Experi-
mental results show that the learned communica-
tion policy can be deployed on physical quadro-
tors. Further testing and the extension of our
method to heterogeneous multi-robot systems is
left for future work. Our method reduces the
amount of communication requests significantly
while achieving collision-free motions, practically
achieving the same safety as more conservative
communication baselines. The analysis and exten-
sion of our method under imperfect and delayed
communication conditions are also left for future
work. In comparison with Serra-Gómez et al.
(2020), we use an architecture that enables us to
scale our approach to higher and varying number
of agents during and after training. Furthermore,
we introduce a training method which allows to
learn safe policies without sacrificing adaptabil-
ity. Future work will investigate how to prioritize
episodes from scenarios which are rich in infor-
mation to improve sample efficiency. Finally, our
learned communication policy can only influence
and coordinate the motion planning of each robots
to a certain extent. It can only choose when
additional information is needed to generate safe
trajectories, but cannot modify this information
nor modify the plans generated by the NMPC
directly. Learning how to modify the information
and/or plans generated by the NMPC to compen-
sate for a lack in accuracy of our model is left for
future work as well.

Supplementary information. Accompanying
this article we provide electronic supplementary
material of our experiments in both simulated and
real environments.

Fig. 11: Box plot on the two-drone distance distri-
bution for different levels of communication. The
dotted line indicates the collision distance.

Appendix A Dynamic model

In this work, we use the same drone model
and specifications for the Parrot Bebop2 SDK as
in Zhu and Alonso-Mora (2019b). According to
the Parrot Bebop2 SDK, the control inputs to
the quadrotor are given by u = [ϕc, θc, vzc , ψ̇c] ∈
R4, where ϕc and θc are the desired roll and
pitch angles, vzc is the desired linear velocity in
the z-axis and ψ̇c is the yaw rate. To simulate
the drone dynamics, we extend the state of each
drone, as defined in Section 4.1.1, with informa-
tion of its orientation (ϕ, θ, ψ). We use a first order
low-pass Euler approximation of the quadrotor
dynamics (Zhu & Alonso-Mora, 2019b), where the
dynamics of the state velocity vector are:

[
v̇x
v̇y

]
= RZ(ψ)

[
tan θ
− tanϕ

]
g − kD

[
vx
vy

]
,

v̇z = 1
τvz

(kvzvzc − vz),
(A1)

where g = 9.81m/s2 is the earth’s gravity,
RZ(ψ) ∈ SO(2) is the rotation matrix along the
drone’s local z-axis, kD is the drag coefficient, kvz
and τvz are the gain and time constant of vertical
velocity. The attitute dynamics of the quadrotor
are:

ϕ̇ =
1

τϕ
(ϕc − ϕ), θ̇ =

1

τθ
(θc − θ), ψ̇ = ψ̇c

(A2)

Springer Nature 2021 LATEX template

Article Title 25

where τϕ, τθ are the time constants of roll and
pitch angles respectively. In this work, due to the
drone being able to move in any direction with any
yaw angle, we fix the drone’s yaw angle to zero.
Consequently, ψ̇c = 0

Appendix B Cost Functions

The components of the cost function
Jk
i (x

k
i ,u

k
i), k = 0, 1, . . . , N − 1 and JN

i (xN
i ,gi)

are defined in the following.

Goal navigation

We minimize the displacement between the tra-
jectory’s terminal position and the robot’s goal
location, and define a terminal cost

JN
i (xN

i ,gi) = wN
i

∥∥pN
i − gi

∥∥
∥p0

i − gi∥
, (B3)

where wN
i ∈ R+ is a tuning weight coefficient.

Control input cost

One of the stage cost terms is to minimize the
control input,

Jk
i,u(u

k
i) = wi,u

∥∥uk
i

∥∥ , (B4)

where wi,u ∈ R+ is a tuning weight coefficient.

Collision cost

To improve safety, a stage collision potential field
cost is introduced between the robot and each
other robot,

Jk
i,j,c(x

k
i) =

{
wi,c(d

pot − dkij), if dkij < dpot,

0, otherwise .

(B5)
where wi.c ∈ R+ is a tuning weight coefficient,
dkij =

∥∥pk
i − p̂k

j

∥∥ is the distance between robot i
and each other robot j, and dpot is the specified
potential field distance, a scalar hyperparameter
that establishes the limits of the potential field.
The field grows linearly once a robot enters its
limits as seen in equation B5. Then the collision
potential cost is defined as

Jk
i,c(x

k
i) =

∑
j∈I,j ̸=i

Jk
i,j,c(x

k
i). (B6)

Finally, the overall stage cost is

Jk
i (x

k
i ,u

k
i) = Jk

i,u(u
k
i) + Jk

i,c(x
k
i). (B7)

Acknowledgements. This work is supported
by the U.S. Office of Naval Research Global
(ONRG) NICOP-grant N62909-19-1-2027.

Declarations

Conflict of interest. The authors declare that
they have no conflict of interest.

Author contribution. All authors contributed
to the study conception and design. Álvaro Serra-
Gómez wrote the first draft of the manuscript,
implemented the method and simulated exper-
iments, and analysed the obtained results. Hai
Zhu and Bruno Brito wrote the first draft of
related works section 2.1 and participated in writ-
ing the preliminaries section. Álvaro Serra-Gómez
and Hai Zhu implemented the simulation envi-
ronment used for training and testing. Álvaro
Serra-Gómez, Hai Zhu and Bruno Brito performed
the real experiments. Wendelin Böhmer provided
supervision and feedback over the whole project,
with a specific focus on the method and analy-
sis of results. Javier Alonso-Mora supervised and
provided feedback for the whole project, includ-
ing the analysis of results, and provided funding.
All authors commented on previous versions of the
manuscript. All authors reviewed and approved
the final manuscript.

References

Becker, R., Carlin, A., Lesser, V., Zilberstein,
S. (2009). Analyzing myopic approaches
for multi-agent communication. Computa-
tional Intelligence, 25 , 31–50. 10.1111/
j.1467-8640.2008.01329.x

Bengio, Y., Louradour, J., Collobert, R., Weston,
J. (2009). Curriculum learning. Proceedings
of the 26th annual international conference
on machine learning (pp. 41–48).

Bernstein, D., Givan, R., Immerman, N., Zilber-
stein, S. (2002, 12). The complexity of
decentralized control of markov decision pro-
cesses. Mathematics of Operations Research,
27 . 10.1287/moor.27.4.819.297

Springer Nature 2021 LATEX template

26 Article Title

Best, G., Forrai, M., Mettu, R.R., Fitch,
R. (2018). Planning-aware communica-
tion for decentralised multi-robot coordi-
nation. 2018 ieee international conference
on robotics and automation (icra) (p. 1050-
1057). 10.1109/ICRA.2018.8460617

Brito, B., Everett, M., How, J.P., Alonso-Mora,
J. (2021). Where to go next: Learn-
ing a subgoal recommendation policy for
navigation among pedestrians. ArXiv ,
abs/2102.13073 .

Das, A., Gervet, T., Romoff, J., Batra, D., Parikh,
D., Rabbat, M., Pineau, J. (2019). Tar-
MAC: Targeted multi-agent communication.
36th international conference on machine
learning, icml 2019.

Ding, Z., Huang, T., Lu, Z. (2020). Learning indi-
vidually inferred communication for multi-
agent cooperation. ArXiv , abs/2006.06455 .

Domahidi, A., & Jerez, J. (2014). Forces pro-
fessional. embotech gmbh (http://embotech.
com/forces-pro).

Everett, M., Chen, Y.F., How, J.P. (2018).
Motion Planning among Dynamic,
Decision-Making Agents with Deep
Reinforcement Learning. Ieee interna-
tional conference on intelligent robots
and systems (pp. 3052–3059). Retrieved
from https://github.com/mfe7/cadrl ros
10.1109/IROS.2018.8593871

Everett, M., Chen, Y.F., P. How, J. (2019).
Collision avoidance in pedestrian-rich envi-
ronments with deep reinforcement learning.
ArXiv , abs/1910.11689 .

Fan, T., Long, P., Liu, W., Pan, J. (2020).
Distributed multi-robot collision avoid-
ance via deep reinforcement learning
for navigation in complex scenarios.
The International Journal of Robotics
Research, 39 (7), 856-892. Retrieved from
https://doi.org/10.1177/0278364920916531
10.1177/0278364920916531

Foerster, J.N., Assael, Y.M., de Freitas, N., White-
son, S. (2016). Learning to communicate

with deep multi-agent reinforcement learn-
ing. Proceedings of the 30th international
conference on neural information processing
systems (p. 2145–2153). Red Hook, NY,
USA: Curran Associates Inc.

Foerster, J.N., Farquhar, G., Afouras, T., Nardelli,
N., Whiteson, S. (2018). Counterfactual
multi-agent policy gradients. Proceedings
of the thirty-second aaai conference on arti-
ficial intelligence and thirtieth innovative
applications of artificial intelligence confer-
ence and eighth aaai symposium on edu-
cational advances in artificial intelligence.
AAAI Press.

Gama, F., Marques, A., Leus, G., Ribeiro, A.
(2019). Convolutional neural network archi-
tectures for signals supported on graphs.
IEEE Transactions on Signal Processing ,
67 , 1034-1049.

Gupta, J.K., Egorov, M., Kochenderfer, M.
(2017). Cooperative Multi-agent Control
Using Deep Reinforcement Learning (Vol.
10642 LNAI; Tech. Rep.). 10.1007/978-3
-319-71682-4 5

Hochreiter, S., & Schmidhuber, J. (1997, 12).
Long short-term memory. Neural compu-
tation, 9 , 1735-80. 10.1162/neco.1997.9.8
.1735

Iqbal, S., & Sha, F. (2019). Actor-attention-
critic for multi-agent reinforcement learning.
Icml.

Jiang, J., & Lu, Z. (2018). Learning attentional
communication for multi-agent cooperation.
Advances in neural information processing
systems.

Kamel, M., Alonso-Mora, J., Siegwart, R., Nieto,
J. (2017). Robust collision avoidance
for multiple micro aerial vehicles using
nonlinear model predictive control. 2017
ieee/rsj international conference on intel-
ligent robots and systems (iros) (pp. 236–
243). IEEE. 10.1109/IROS.2017.8202163

Kassir, A., Fitch, R., Sukkarieh, S. (2016, nov).

Springer Nature 2021 LATEX template

Article Title 27

Communication-efficient motion coordina-
tion and data fusion in information gath-
ering teams. Ieee international conference
on intelligent robots and systems (Vol. 2016-
November, pp. 5258–5265). Institute of
Electrical and Electronics Engineers Inc. 10
.1109/IROS.2016.7759773

Kingma, D.P., & Ba, J. (2015). Adam: A
method for stochastic optimization. CoRR,
abs/1412.6980 .

Kurin, V., Igl, M., Rocktäschel, T., Boehmer, W.,
Whiteson, S. (2020). My body is a cage: the
role of morphology in graph-based incom-
patible control. ArXiv , abs/2010.01856 .

Li, Q., Gama, F., Ribeiro, A., Prorok, A.
(2020). Graph neural networks for decen-
tralized multi-robot path planning. 2020
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS),
11785-11792.

Li, Q., Lin, W., Liu, Z., Prorok, A. (2020).
Message-aware graph attention networks
for large-scale multi-robot path planning.
ArXiv , abs/2011.13219 .

Liang, E., Liaw, R., Nishihara, R., Moritz, P.,
Fox, R., Gonzalez, J., Goldberg, K., Stoica,
I. (2017). Ray rllib: A composable and scal-
able reinforcement learning library. ArXiv ,
abs/1712.09381 .

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P.,
Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environ-
ments. Advances in neural information
processing systems (Vol. 2017-Decem, pp.
6380–6391).

Luis, C.E., Vukosavljev, M., Schoellig, A.P.
(2020). Online trajectory generation with
distributed model predictive control for
multi-robot motion planning. IEEE Robotics
and Automation Letters, 5 (2), 604–611. 10
.1109/LRA.2020.2964159

Mordatch, I., & Abbeel, P. (2018). Emergence of
grounded compositional language in multi-
agent populations. 32nd AAAI Conference

on Artificial Intelligence, AAAI 2018 , 1495–
1502.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A.,
Liaw, R., Liang, E., Elibol, M., Yang, Z.,
Paul, W., Jordan, M.I., Stoica, I. (2018).
Ray: A distributed framework for emerg-
ing ai applications. Proceedings of the
13th usenix conference on operating systems
design and implementation (p. 561–577).
USA: USENIX Association.

Rahmattalabi, A., Chung, J.J., Colby, M., Tumer,
K. (2016). D++: Structural credit
assignment in tightly coupled multiagent
domains. 2016 ieee/rsj international con-
ference on intelligent robots and systems
(iros) (p. 4424-4429). 10.1109/IROS.2016
.7759651

Rashid, T., Samvelyan, M., Witt, C.S.D., Far-
quhar, G., Foerster, J.N., Whiteson, S.
(2018). Qmix: Monotonic value function
factorisation for deep multi-agent reinforce-
ment learning. ArXiv , abs/1803.11485 .

Roth, M., Simmons, R., Veloso, M. (2005). Rea-
soning about joint beliefs for execution-time
communication decisions (Tech. Rep.).

Schulman, J., Moritz, P., Levine, S., Jordan, M.I.,
Abbeel, P. (2016). High-dimensional con-
tinuous control using generalized advantage
estimation. CoRR, abs/1506.02438 .

Schulman, J., Wolski, F., Dhariwal, P., Rad-
ford, A., Klimov, O. (2017). Proximal
policy optimization algorithms. ArXiv ,
abs/1707.06347 .

Serra-Gómez, A., Brito, B., Zhu, H., Chung, J.J.,
Alonso-Mora, J. (2020). With whom to
communicate: Learning efficient communi-
cation for multi-robot collision avoidance.
2020 ieee/rsj international conference on
intelligent robots and systems (iros) (pp.
11770–11776). IEEE.

Son, K., Kim, D., Kang, W.J., Hostallero, D.E.,
Yi, Y. (2019). Qtran: Learning to fac-
torize with transformation for cooperative
multi-agent reinforcement learning. ArXiv ,

Springer Nature 2021 LATEX template

28 Article Title

abs/1905.05408 .

Sukhbaatar, S., Szlam, A., Fergus, R. (2016).
Learning multiagent communication with
backpropagation. Advances in Neural Infor-
mation Processing Systems(Nips), 2252–
2260.

Sun, C., Shen, M., How, J.P. (2020). Scal-
ing up multiagent reinforcement learn-
ing for robotic systems: Learn an adap-
tive sparse communication graph. 2020
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS),
11755-11762.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki,
W., Zambaldi, V., Jaderberg, M., Lanctot,
M., Sonnerat, N., Leibo, J.Z., Tuyls, K.,
Graepel, T. (2018). Value-decomposition
networks for cooperative multi-agent learn-
ing. ArXiv , abs/1706.05296 .

Talamali, M.S., Saha, A., Marshall, J.A.R., Reina,
A. (2021). When less is more: Robot swarms
adapt better to changes with constrained
communication. Science Robotics, 6 .

Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.
(2011). Reciprocal n-body collision avoid-
ance. Springer tracts in advanced robotics
(Vol. 70, pp. 3–19). 10.1007/978-3-642
-19457-3 1

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A.N., Kaiser, L., Polo-
sukhin, I. (2017). Attention is all you need.
ArXiv , abs/1706.03762 .

Wang, L., Ames, A.D., Egerstedt, M. (2017).
Safety barrier certificates for collisions-free
multirobot systems. IEEE Transactions on
Robotics, 33 (3), 661–674. 10.1109/TRO
.2017.2659727

Wang, R.E., Kew, J., Lee, D., Lee, T., Zhang, T.,
Ichter, B., Tan, J., Faust, A. (2020). Model-
based reinforcement learning for decentral-
ized multiagent rendezvous. arXiv: Multia-
gent Systems.

Wheeler, T., Bharathi, E., Gil, S. (2019). Switch-
ing topology for resilient consensus using
wi-fi signals. 2019 international conference
on robotics and automation (icra) (p. 2018-
2024). 10.1109/ICRA.2019.8793788

Yongjie, Y., & Yan, Z. (2009). Collision avoidance
planning in multi-robot based on improved
artificial potential field and rules. 2009
ieee international conference on robotics and
biomimetics (robio) (pp. 1026–1031). IEEE.

Zhai, Y., Ding, B., Liu, X., Jia, H., Zhao, Y., Luo,
J. (2021). Decentralized multi-robot col-
lision avoidance in complex scenarios with
selective communication. IEEE Robotics
and Automation Letters, 6 (4), 8379-8386.
10.1109/LRA.2021.3102636

Zhou, D., Wang, Z., Bandyopadhyay, S., Schwa-
ger, M. (2017). Fast, on-line collision avoid-
ance for dynamic vehicles using buffered
voronoi cells. IEEE Robotics and Automa-
tion Letters, 2 (2), 1047–1054. 10.1109/
LRA.2017.2656241

Zhu, H., & Alonso-Mora, J. (2019a). B-uavc:
Buffered uncertainty-aware voronoi cells for
probabilistic multi-robot collision avoidance.
2019 international symposium on multi-
robot and multi-agent systems (mrs) (pp.
162–168).

Zhu, H., & Alonso-Mora, J. (2019b). Chance-
constrained collision avoidance for mavs in
dynamic environments. IEEE Robotics and
Automation Letters, 4 (2), 776–783. 10
.1109/LRA.2019.2893494

Zhu, H., Claramunt, F.M., Brito, B., Alonso-
Mora, J. (2021). Learning interaction-
aware trajectory predictions for decen-
tralized multi-robot motion planning in
dynamic environments. IEEE Robotics and
Automation Letters, 6 (2), 2256-2263. 10
.1109/LRA.2021.3061073

Zhu, H., Juhl, J., Ferranti, L., Alonso-Mora, J.
(2019). Distributed multi-robot formation
splitting and merging in dynamic environ-
ments. 2019 ieee international conference on

Springer Nature 2021 LATEX template

Article Title 29

robotics and automation (icra) (pp. 9080–
9086). IEEE. 10.1109/ICRA.2019.8793765

	Introduction
	Related Work
	Communication in Collision Avoidance
	Communication Scheduling
	Learning Methods for Coordination

	Preliminaries
	Multi-Robot Collision Avoidance
	Distributed Model Predictive Control
	Problem Formulation

	Method
	Reinforcement Learning Setup
	State space X
	Observation space Z
	Action space A= iIAi
	Reward Ri(bold0mu mumu xx2005/06/28 ver: 1.3 subfig packagexxxxt,t)
	Observation model O(bold0mu mumu zz2005/06/28 ver: 1.3 subfig packagezzzzt+1,bold0mu mumu xx2005/06/28 ver: 1.3 subfig packagexxxxt+1,t)
	Transition model T(bold0mu mumu xx2005/06/28 ver: 1.3 subfig packagexxxxt+1,t,bold0mu mumu xx2005/06/28 ver: 1.3 subfig packagexxxxt)

	Network Architecture
	Multi-Scenario Multi-Stage Training
	Training algorithm
	Training scenarios
	Training/Test regime differentiation

	Predicting and Generating Safe Trajectory Intentions
	Informed constant velocity estimations
	Generating safe trajectory intentions

	Simulation Experiments
	Training Setup
	Baselines
	Testing Scenarios
	Performance Evaluation
	Robustness and Zero-Shot Generalization Capabilities
	Lower/Larger scale multi-robot systems
	Noisy positions blackand velocities

	Ablation Study
	Evaluation metrics and output models
	Scalable attention-based architecture
	Training-test environment separation

	Real Experiments
	Hardware Setup
	Multi-Robot Scenarios

	Conclusions
	Supplementary information

	Dynamic model
	Cost Functions
	Acknowledgements
	Conflict of interest
	Author contribution

