
5520 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

Optimizing Task Waiting Times in Dynamic
Vehicle Routing

Alexander Botros , Member, IEEE, Barry Gilhuly , Member, IEEE, Nils Wilde , Member, IEEE,
Armin Sadeghi , Member, IEEE, Javier Alonso-Mora , Senior Member, IEEE,

and Stephen L. Smith , Senior Member, IEEE

Abstract—We study the problem of deploying a fleet of mobile
robots to service tasks that arrive stochastically over time and at
random locations in an environment. This is known as the Dynamic
Vehicle Routing Problem (DVRP) and requires robots to allocate
incoming tasks among themselves and find an optimal sequence
for each robot. State-of-the-art approaches only consider average
wait times and focus on high-load scenarios where the arrival
rate of tasks approaches the limit of what can be handled by the
robots while keeping the queue of unserviced tasks bounded, i.e.,
stable. To ensure stability, these approaches repeatedly compute
minimum distance tours over a set of newly arrived tasks. This
letter is aimed at addressing the missing policies for moderate-load
scenarios, where quality of service can be improved by prioritizing
long-waiting tasks. We introduce a novel DVRP policy based on a
cost function that takes the p-norm over accumulated wait times
and show it guarantees stability even in high-load scenarios. We
demonstrate that the proposed policy outperforms the state-of-the-
art in both mean and 95th percentile wait times in moderate-load
scenarios through simulation experiments in the Euclidean plane
as well as using real-world data for city scale service requests.

Index Terms—Path planning for multiple mobile robots or
agents, planning, scheduling and coordination, task planning.

I. INTRODUCTION

THE Dynamic Vehicle Routing Problem is an important and
long-studied challenge in assigning autonomous vehicles

(or robots) to tasks as they appear in the environment. Applica-
tions include pickup-and-delivery [1], [2], mobility-on-demand
transportation systems [3], [4], [5], sensor networks [6], [7],
surveillance [8], [9], personal care [10], [11], and environmental
monitoring [12], [13], [14].

In a typical application, one or more robots assign and sched-
ule incoming tasks to optimize their quality of service. When the
set of tasks is finite and known a priori, the resulting problem is
known as Vehicle Routing: a fleet of m robots services n tasks

Manuscript received 29 March 2023; accepted 4 July 2023. Date of publication
13 July 2023; date of current version 25 July 2023. This letter was recommended
for publication by Associate Editor H.-J. Kim and Editor J. Yi upon evaluation
of the reviewers’ comments. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada and in part by the
European Union’s Horizon 2020 Research and Innovation Program under Grant
101017008. (Corresponding author: Barry Gilhuly.)

Alexander Botros, Barry Gilhuly, Armin Sadeghi, and Stephen L. Smith are
with the Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail: abotros@uwaterloo.ca;
bgilhuly@uwaterloo.ca; a6sadegh@uwaterloo.ca; stephen.smith@uwaterloo.
ca).

Nils Wilde and Javier Alonso-Mora are with the Delft University of Technol-
ogy, 2628 Delft, The Netherlands (e-mail: n.wilde@tudelft.nl; j.alonsomora@
tudelft.nl).

Digital Object Identifier 10.1109/LRA.2023.3295251

while maximizing some service measure. When new tasks arrive
over time, the problem becomes the dynamic vehicle routing
problem (DVRP). The conventional approach for multiple-robot
vehicle routing with provable properties [6], [7] is to divide the
environment into equitable partitions. A robot is assigned to
each partition thus simplifying the multiple-robot problem into
several single-robot instances. In this letter we seek to improve
multi-robot performance by making advances in the underlying
single-robot policies.

A characteristic of DVRPs is the load factor ρ ∈ (0, 1) [15],
[16], [17]. Letting λ denote the arrival rate of incoming tasks
and letting s̄ be the expected service time, the load factor is
given by ρ = λs̄/m for m robots. It captures the fraction of
time the robot fleet must be working to service tasks. In light
load ρ→ 0+, the queue length of unserviced tasks approaches
zero, and robots have enough time between task arrivals to move
to optimal waiting locations [6]. In heavy loadρ→ 1−, all robots
are continuously servicing tasks with no idle time, and the queue
length of unserviced tasks approaches infinity. Neither of these
states is operationally desirable: under light load, robots are
underutilized, and under heavy load, task wait times become
undesirably long [15]. Previous work focused on guarantees
under the extremes of light or heavy load, neglecting the space
where these systems operate ideally [18].

In this letter, we focus on systems operating under mod-
erate load, where for example ρ ∈ [.5, .9]. Moderate load is
arguably of the most practical significance, since it corresponds
to the case where the queue of unserviced tasks is neither
empty nor approaching infinite length. In fact, as a rule of
thumb, the load factor of a robot should be below 0.9 [18]
since the length of the outstanding task queue is proportional
to 1/(1− ρ)2 [19]. We propose a policy for moderate loads
that seeks to solve the multi-objective problem of minimiz-
ing both average and maximum wait times. To that end, we
study a cost function to compute new tours where we min-
imize the sum of the wait times, each raised to an exponent
p > 1. Under this cost function, tasks gain priority by waiting
sufficiently long. While there is some advantage to this cost
function under heavy load (ρ→ 1−), the advantage disappears
as the queue grows and travel distances between tasks approach
zero. We illustrate the advantages of our method in Fig. 1
for a monitoring application such as forest fire detection [20]. A
network of low-cost sensors (e.g., distributed in the environment,
onboard high-altitude drones, or satellites) can detect points of
interest. Upon detection, a drone with high-resolution sensors
is tasked to visit these locations to collect more accurate data.
State-of-the-art methods [7] find tours of minimal length to
minimize total mission time, shown in Fig. 1(a)). In contrast,

2377-3766 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2023 at 09:37:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6927-2149
https://orcid.org/0000-0003-0622-7305
https://orcid.org/0000-0003-3238-8153
https://orcid.org/0000-0001-5244-367X
https://orcid.org/0000-0003-0058-570X
https://orcid.org/0000-0002-8636-407X
mailto:abotros@uwaterloo.ca
mailto:bgilhuly@uwaterloo.ca
mailto:a6sadegh@uwaterloo.ca
mailto:stephen.smith@uwaterloo.ca
mailto:stephen.smith@uwaterloo.ca
mailto:n.wilde@tudelft.nl
mailto:j.alonsomora@tudelft.nl
mailto:j.alonsomora@tudelft.nl

BOTROS et al.: OPTIMIZING TASK WAITING TIMES IN DYNAMIC VEHICLE ROUTING 5521

Fig. 1. Effect of different cost functions on the optimal tour of a monitoring
UAV. Triggered ground sensors add observation tasks (colored dots) for the
UAV. Color (increasing values from green to red) represents how long a task has
already been waiting when the tour is planned (latent wait time).

our method, shown in Fig. 1(b)), gives a higher priority to tasks
that have waited longer and thus visits these locations earlier.
Tasks with longer waiting times (red) are serviced earlier in the
tour using our method, resulting in a lower mean service time
for all tasks. This results in a lower average and maximum wait
time.

Related Work: Vehicle Routing problems have been studied
in many forms over the past several decades [15], [21], [22],
with active research continuing today [23], [24], [25], [26], [27],
[28], [29], [30]. Following the taxonomy in [27], we consider the
dynamic and stochastic variant of DVRP where new tasks arrive
online (dynamic) according to a stochastic process (stochastic)
and are randomly distributed in the environment.

The categorization of light and heavy load states was con-
sidered in [15]. The bounds on the performance of the optimal
policy in heavy load given in [15], [19] are a building block for
a number of studies on DVRP variants [6], [7], [16]. In [7], the
authors propose a BATCH policy where the TSP is calculated on
the task locations of a batch of tasks, and at each iteration, a
randomly chosen fraction of the batch is serviced. The authors
show that this approach is within a factor of two of optimal
in heavy load. The aforementioned studies focused on heavy
or light loads and proposed policies that compute tours which
minimize the total travel time (i.e., TSP minimization). An
alternative policy is to minimize the maximum wait time and/or
the average wait time [31], [32], [33] in the context of fairness
among tasks. Closely related to our approach, [34] uses a vehicle
routing cost based on the square of wait times; while the cost
function is a special case of our cost function where the wait
time is raised to some exponent p > 1, the policy is different.
In [34] routes are recomputed whenever new tasks arrive, while
our work uses the BATCH approach from [7]. This allows us to
derive theoretical guarantees on system stability which are not
provided in [31], [32], [33], [34].

The DVRP finds widespread applications in various robotics
and transportation domains. Fleets of autonomous vehicles are
deployed for pickup-and-delivery throughout cities [1], [2] or
for providing on-site service in indoor environments such as
hospitals [10], [11]. In many cases, vehicles need to react to
new requests appearing over time. For instance, in autonomous
mobility on demand [3], [4], [5] it is desired to minimize the
average response time to the incoming requests, while also
limiting maximum waiting times. Other applications include
the deployment of autonomous drones as mobile sensor net-
works [6], [7], for surveillance [8], [9], search and rescue [35],
and in environmental monitoring [12], [13], [14].

Contributions: Our contributions are as follows. First, we
propose a new BATCH policy using the sum of wait times, each
raised to an exponent p, as the cost. This actively considers the
time a task has already waited and thus allows for prioritizing
long-waiting tasks. Second, we establish a relation between the
length of the optimal tour for the proposed cost and the number
of tasks in the tour, and prove that for p > 1 the proposed policy
is stable under any load factor ρ < 1, providing the first stability
result for a policy with this type of cost function. Finally, we
demonstrate that under moderate load our policy achieves a
lower average wait-time and reduces the number of outlying
tasks with high wait-time.

II. PROBLEM FORMULATION

In this section, we revisit the formulation of the well-known
DVRP. Consider a convex and closed environment E ⊂ Rd

where d is the dimension. A set of m vehicles traveling with
constant speed v are servicing the tasks arriving in E . The
tasks arrive according to a Poisson process with time-intensity
λ ∈ R>0. Task locations are distributed according to a spatial
density ϕ : E → R>0. Task arrivals are i.i.d (independent and
identically distributed), and servicing a task requires a vehicle
to visit the location of the task. The time required to service
task j at its location, denoted by sj , is i.i.d with finite first and
second moments, i.e., s and s2. The load factor for this system
of m vehicles is defined as ρ = λs/m. Given the arrived tasks
and the current vehicle locations, a policy repeatedly computes
tours for each vehicle. The wait time of task j, denoted by Wj ,
is the time between the arrival time of the task and the time
that a vehicle arrives at the task location and starts servicing it.
The system time of task j, denoted by Tj , is the time between
the arrival of the task and the time that a vehicle completes
servicing the task, i.e., Tj = Wj + sj . The steady-state system
time is denoted by T = lim supj→∞E[Tj]. Let π denote a tour
of tasks found by following a routing policy, and let Tπ be the
corresponding system time. A policy is stable if the expected
number of outstanding tasks is uniformly bounded at all times.
Finally, we assume that vehicles have sufficient capacity for all
tasks and do not need to return to the depot.

Problem 1 (DVRP): Given an environment E , m vehicles,
and tasks arriving according to a stochastic process with density
λ, spatial distribution ϕ, and random service times following a
Gaussian distributionN (s, σ), find a stable policy that computes
a tour π minimizing the system time, i.e., infπTπ .

III. APPROACH

We adapt a state-of-the-art partitioning approach [7] to cast
the multi-robot setting of the DVRP into a set of single-robot
instances. After reviewing previously proposed DVRP policies
with provable stability guarantees, we present a novel single
vehicle policy based on a cost function where we take the p-norm
of wait times and show that this policy is also stable.

A. Vehicle Routing Cost Function

We study how a single vehicle computes routes to service tasks
in the environment E ⊂ Rd. At a start time t0, let T be set of n
tasks that have arrived but not been serviced. Further, let xs be
the vehicle’s starting pose, let xi, i = 1, . . . , n denote the pose
of task τi ∈ T , and let Li,j = ||xi − xj ||/v denote the travel

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2023 at 09:37:50 UTC from IEEE Xplore. Restrictions apply.

5522 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

Algorithm 1: Generalized Policy.

1: procedure Tour (T , p ≥ 1, η ∈ (0, 1], pt ∈ {0, 1},
R ∈ {0, 1})

2: Replace ti with ptti in cp (1)
3: while T �= ∅ do
4: Compute a cp-minimizing tour π∗ of T
5: (xs, x1, x2, . . . , xn)← π∗

6: index← (RandomInteger(1, n))R

7: Service tasks τindex, . . . , τindex+ηn in order
8: Remove tasks τindex, . . . , τindex+ηn from T
9: if a new task τn+1 arrives at any time then

10: add τn+1 to T
11: return to xwaiting

time between xi, xj for all i, j ∈ {1, . . . , n} ∪ {0}. We assume
constant speed v, which, without loss of generality, we set to 1
implying that length and travel time for any segment are equiva-
lent. For each task τi, let ti ≥ 0 denote the latent wait time of task
τi ∈ T : the difference between the time of planning the current
tour and when τi arrived. Finally, let si denote the time required
to service task τi. Thus, we decompose the system time, Ti, into
three components: Ti = ti + {tour travel time to τi}i + si.

Using these definitions, a tour π is an ordering of task service
visits that minimizes some undesirable properties. Given an ar-
bitrary tour π = (xs, τ1, τ2, . . . , τn) as well as a value p ∈ N≥1,
we consider a cost function:

cp(π) =

(
n∑

i=1

(latent wait time of task τi︷︸︸︷
ti +

i∑
j=1

(
Lj,j−1

v
+ s̄

)
︸ ︷︷ ︸

time to reach and service task τi

)p
)1/p

. (1)

We notice that cp represents the Lp-norm of the waiting time of
each task in T assuming service times si equal the expected
value s̄. We assume that the service time of any task is not
revealed before servicing [6]. Thus, treating service time as s̄
when evaluating a candidate tour is not unreasonable. Since s̄ is
constant, in the remainder of this letter, we denote Lj,j−1/v + s̄
as simply lj,j−1 for brevity. We offer an observation:

Observation 1 (Variants of cp cost): The cost cp(π) general-
izes previously proposed cost functions:

1) Minimizing c1(π) is equivalent to minimizing the mean
wait time of all tasks in T . (1) reduces to the sum of wait
times and long waits are no longer penalized.

2) Minimizing c∞(π) is equivalent to minimizing the max-
imum wait time of all tasks in T since the longest wait
time becomes the dominant term and is heavily penalized.
If ti = 0 holds (i.e., all tasks arrive at the beginning of the
tour), then the problem is equivalent to minimizing the
total travel distance i.e., solving the classic TSP.

B. Solution Archetypes and Proposed Approach

In this section, we present three state-of-the-art approaches
to Problem 1 as well as our proposed method. We begin with
a generalized algorithm (Algorithm 1) that, with appropriately
selected inputs, captures all four approaches. The algorithm
Tour takes as input a set of n tasks T , an exponent p for

the cp cost defined in (1), a value η ∈ (0, 1], and two boolean
variables pt and R. The high-level idea behind the algorithm is
this: we start by computing a tour π∗ that minimizes cp over all
tours of T (Line 4) and then select a fragment of length ηn —
which we refer to as an η-fragment — of this tour to service
(Lines 6–8). The boolean input R controls which fragment to
service. If R = 0 then index= 1 (Line 6) and we service the
first η-fragment, whereas if R = 1 then we service a random
η-fragment (Lines 7–8). If a new task τn+1 arrives during this
time, it is added to T (Lines 9 - 10). Once the η-fragment has
been serviced, the process repeats. Finally, the boolean variable
pt controls whether the latent wait time is considered in the cost
cp. If there are no outstanding tasks (Line 11), the robot returns
to a given waiting pose xwaiting usually defined as the centroid
of the workspace [6], [7].
BATCH policy: The BATCH policy proposed in [6] has the

structure TOUR(T , p =∞, η = 1, pt = 0, R = 0). Since p =
∞, and pt = 0, the cost cp is the total length of the tour, and
cp is minimized by a tour πTSP that solves the TSP. Further,
since η = 1, R = 0, the full set of tasks T is serviced before
re-planning.
η- BATCH policy: In contrast, the authors of [7] pro-

posed η-BATCH, which we capture with TOUR(T , p =∞, η ∈
(0, 1), pt = 0, R = 1). Again, the tour π∗ in Line 4 of Algo-
rithm 1 is πTSP that solves the TSP for tasks T . However,
since η ∈ (0, 1), a η-fragment is randomly selected from π∗ and
serviced before re-planning.

The notion of a η-fragment is proposed in [7] to improve the
average wait time of tasks in T . If η = 1, then new tasks wait
for all existing tasks to be serviced before they are considered.
However, if η ∈ (0, 1) and the first η-fragment is serviced before
re-planning, then it is possible for some tasks to be continually
overlooked. Thus, the η-BATCH policy arbitrarily selects an η-
fragment to service before re-planning (R = 1) which ensures
that, in expectation, no task must wait longer than 1/η iterations
of Algorithm 1 before servicing.
DC - BATCH policy: The single vehicle Divide and Conquer

strategy [7] partitions the environment into r equitable sectors.
The algorithm plans a TSP tour for the tasks that arrive in a
sector, services them, and then moves to the next sector with
tasks in a round-robin fashion.

Proposed cp- BATCH policy: We propose a new policy
labeled cp-BATCH which has the form TOUR(T , p ∈ (1,∞), η ∈
(0, 1), pt = 1, R = 0). That is, we include ti in the cost (1) and
thus do not find a tour π∗ of minimal length, but minimal cp-cost.
Further, we do not select the η-fragment randomly.

The motivation for our approach is that values p ∈ (1,∞)
and pt = 1 incorporate the latent wait time of tasks into the
cost. If tasks have been waiting too long to be serviced, it
will become too costly not to service them. Thus we adopt
the η-fragment strategy of [7] to improve performance with-
out having to also impose randomness to mitigate long max-
imum wait times. The value p = 1 has been excluded since
it places no additional penalty on long waits, leading to the
possibility of distant tasks being ignored [21]. Examples of
the BATCH, η − BATCH, DC-BATCH, and proposed approaches are
illustrated in Fig. 2. Observe that η − BATCH services τ5 first: the
randomness of the η-fragment causes this approach to miss τ1
which was closer to the start location. This does not occur in the
proposed approach which services the first η-fragment before
re-planning. The stability of the proposed method is established
next.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2023 at 09:37:50 UTC from IEEE Xplore. Restrictions apply.

BOTROS et al.: OPTIMIZING TASK WAITING TIMES IN DYNAMIC VEHICLE ROUTING 5523

Fig. 2. Example solutions for the different archetypes on the same tasks. Here, xs = Start = xwaiting. Tasks τ1 − τ4 arrived before planning the current tour,
tasks τ5, τ6 arrive immediately after the tour commences execution.

IV. STABILITY ANALYSIS

In this section, we prove the stability of the proposed ap-
proach. We use the following short-hand notation. Given a tour
π = (τ0, . . . , τn) of a set of tasks T , we use lj to represent
the euclidean distance between tasks τj−1, τj ∈ T . That is,
lj = lj,j−1. Further, l(π) denotes the total length of π. We start
with assumptions:

Assumption 1: Both s̄ and λ are known and the expected load
factor is ρ̄ = λs̄ < 1.

Assumption 2: All tasks arrive in a connected planar region
with area A, finite perimeter P , and maximum Euclidean dis-
tance between tasks Q′.

Assumption 3: At iteration 0 of Algorithm 1, the number of
unserviced tasks is finite and latent wait times ti are bounded by
an arbitrarily large constant R (i.e., R = maxti∈T ti).

Assumptions 1 and 2 are common in the literature (e.g. [6],
[7]). Further, Assumption 1 does not include the spatial distri-
bution of tasks ϕ and the variance of service times, s2 since
the stability result does not depend on them. Assumption 3 is
reasonable since it states only existing tasks at the start have not
been waiting for unbounded time. Letting Q = Q′ + s̄, we note
that Q represents the maximum time to service a task and move
to the next under expected service times.

The proof of stability of the cp-BATCH policy follows closely
the proofs for the policies proposed in [6], [7] in that it appeals
to a well-established recursion. Letting Nk, Tk be the random
variables representing the number of outstanding tasks at the
beginning of iteration k of Algorithm 1, and the total service
time of those tasks, respectively, and letting λ, η be constants
representing the arrival rate and fragment length (used as input
to Algorithm 1), respectively, then from [7]:

E[Nk+1] = ληE[Tk]︸ ︷︷ ︸
Newly arrived tasks

+ (1− η)E[Nk]︸ ︷︷ ︸
left-over tasks from iteration k

, (2)

The authors of [7] observe that at unit speed, E[Tk] ≤ Q+
ηE[l(π∗k)] + ηE[Nk]s̄ and (2) reduces to

E[Nk+1] ≤ λQ+ ληE[l(π∗k)] + ρηE[Nk]

+ (1− η)E[Nk]. (3)

At a high and informal level, (3) implies that if E[l(π∗k)] grows
with less than linear (LL) power in E[Nk], and ρ < 1, then

lim
E[Nk]→∞

(
E[Nk+1]

E[Nk]

)
≤ 1− η(1− ρ) < 1. (4)

implying (at a high level) the stability of the policy. In [6], [7],
the authors make use of the well established Beardwood-Halton-
Hammersley (BHH) result [36] to prove that if π∗k = πTSP, then
E[l(π∗k)] ≤ K

√
E[Nk] for a constant K from which stability

follows. Though the stability result in [7] is far more rigorous
than the argument above, the crux of that argument, and ours,
is the LL power of E[l(π∗k)] in E[Nk]. Unfortunately, the BHH
result cannot be applied directly to a cp-minimizing tour π∗k for
general values of p, since the latent wait time ti, τi ∈ T cannot
be separated from the cost. Therefore, unlike the tours πTSP used
in [6], [7], the tours π∗k will depend on these latent wait times. As
such, to follow the proofs of stability in [7], we must establish
the LL power of E[l(π∗k)] in E[Nk] at each iteration k. We begin
with supporting results.

Lemma 1 (Bounding Tour Length By Cost): Given anyn tasks
T and any tour π on those tasks, if p ≥ 1, then the length of π
obeys the following inequality:

l(π) ≤ (Q(p+ 1)cp(π)p)
1

p+1 (5)

Proof: Given tour π on tasks T , we observe trivially that
cp(π)p ≥

∑n
i=1(

∑i
j=1 li)

p. Therefore, the length of any tour
l(π) is no more than the length of the maximum length tour
lmax(T) subject to this constraint:

l(π) ≤ lmax(T) .
= max

l1,...,ln
l1 + l2 + · · ·+ ln

s.t.

n∑
i=1

⎛
⎝ i∑

j=1

li

⎞
⎠p

≤ cp(π)p, li ≤ Q.

It is not difficult to show that there exists a value k such that
lmax(T) has the form: l1 = · · · = lk−1 = 0, and lk = · · · = ln =
Q. That is, that the first k lengths are 0 while the remainder
take their maximum value. This is because increasing any value
li, i < k by δ would require a decrease of a value lj , j ≥ k by
more than δ in order to satisfy the constraint. To determine
k, we replace the above general form of lmax(T) in the first
constraint and simplify, resulting in Qp

∑n−k+1
i=1 ip ≤ cp(π)p.

Therefore, letting L = n− k, and observing that
∑L+1

i=1 ip ≥
(L+ 1)p+1(p+ 1)−1 for all L ≥ 0 and p ≥ 1, it must hold that

Qp(L+ 1)p+1(p+ 1)−1 ≤ cp(π)p

⇒ L ≤
(
cp(π)p(p+ 1)

Qp

)1/p+1

.

Finally, given the general form of lmax(T) described above, we
observe that lmax(T) = LQ and the result follows. �

We now establish a bound on the optimal tour length on n
tasks T . We let tmax ≥ maxτi∈T ti be the maximum latent wait
time of tasks in T . We assume that tmax is bounded by a linear
function of the number of tasks.

Lemma 2 (Deterministic bound: l(π∗)): For any n tasks T
and p ≥ 1, if there exists constants ct ≥ 0, ν ∈ [0, 1) such that

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2023 at 09:37:50 UTC from IEEE Xplore. Restrictions apply.

5524 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

tmax ≤ ctn
ν and n ≥ P 2/2 A, then

l(π∗) ≤
(
2p−1Q(p+ 1)(cpt + 2p

√
2 A

p
)
) 1

p+1

︸ ︷︷ ︸
a constant

n
pγ+1
p+1 , (6)

where γ = max{0.5, ν}.
Proof: We begin by establishing an upper bound on

cp(πTSP)p. Let τ1, τ2, . . . , τn denote the ordering of the tasks
T as they appear in πTSP. Then, by the definition of the cost
cp(πTSP), it must hold that

cp(πTSP)p =
n∑

i=1

⎛
⎝ti +

i∑
j=1

lj

⎞
⎠p

≤ n

⎛
⎝tmax +

n∑
j=1

lj

⎞
⎠p

.

Noting
∑n

j=1 lj = l(πTSP) and l(πTSP) is bounded [37] by√
2 A
√
n+ P for all n. Therefore,

cp(πTSP)p ≤ n
(
tmax +

√
2An+ P

)p
≤ n

(
ctn

ν + 2
√
2An

)p
, since tmax ≤ ctn

ν , n ≥ P 2/2 A

≤ 2p−1(cpt + 2p
√

2 A
p
)npγ+1. (7)

The final inequality holds since (A+B)p ≤ 2p−1(Ap +Bp)
for all A,B ≥ 0, p ≥ 1 by the convexity of xp, x ≥ 0. Since π∗

minimizes cp over all tours of T , we conclude that cp(π∗)p ≤
cp(πTSP)p and the result follows from (7) and Lemma 1. �

Letnk denote the number of unserviced tasks at the beginning
of iteration k of Algorithm 1. Thus, nk is the realization of
the random variable Nk. For the remainder of our analysis we
considernk ≥ P 2/2 A for constantsP,A. If there is no iteration
k such that nr ≥ P 2/2 A for every r ≥ k, then stability holds
trivially. Lemma 2 implies that if the latent wait times of tasks
at iteration k of Algorithm 1 are all bounded by a function of nk

with LL power then the same holds for the length of tour (since
pγ+1/p+1 < 1). Using this result, we offer a deterministic bound
on the length of the optimal tour at any iteration when η = 1,
and extend this result to η ∈ (0, 1].

Theorem 1: On any iteration k of Algorithm 1, if π∗k is the
cp-minimizing tour computed in Line 4, p ≥ 1, nk ≥ P 2/2 A,
and η = 1 then there exists constants β ≥ 0, κ ∈ [0, 1) with

l(π∗k) ≤ βnκ
k . (8)

Proof: We offer a proof by way of induction on the number of
iterations k of Algorithm 1. Let Tk denote the outstanding tasks
at the start of iteration k, and π∗k the tour of Tk from Line 4. In the
base case, k = 1 and by Assumption 3, tmax ≤ R. Therefore,
tmax ≤ ctn

ν with ct = R, ν = 0, and the result holds in the base
case by Lemma 2, since γ = 0.5 and p+2/2(p+1) < 1 for p ≥ 1.

The induction assumption is that at iteration k, l(π∗k) ≤
βnκ

k , β ≥ 0, κ ∈ [0, 1). Since η = 1, the maximum latent wait
time of any task inTk+1 is l(π∗k)which occurs if a task arrives just
after the beginning of iteration k. If nk+1 < nk, then the result
holds by the induction assumption. Otherwise, nk+1 ≥ nk and
by the induction assumption tmax ≤ l(π∗k) ≤ βnκ

k ≤ βnκ
k+1.

Thus the conditions of Lemma 2 hold with ct = β, ν = κ, and by
(6), l(π∗k+1) ≤ C̄n

pγ+1/p+1

k+1 where C̄ is the constant coefficient
in (6) with γ = max{1/2, κ} < 1. Since γ < 1, it must hold that

pγ+1/p+1 < 1 and the result holds at iteration k + 1 concluding
the proof. �

Theorem 2: The result of Theorem 1 still holds if η ∈
(0, 1], p ≥ 1 for sufficiently large nk.

Proof: We begin by proving a sub-claim: given a set ofn tasks
Tn, and a new task τn+1 /∈ Tn, let Tn+1 = Tn ∪ {τn+1} and
π∗n, π

∗
n+1 denote cp-minimizing tours of Tn, Tn+1, respectively.

Ifn is sufficiently large and there exists constants cl, cu ≥ 0, ν ∈
[0, 1) such that cl

√
n ≤ ti ≤ cun

ν for all τi ∈ Tn, then for any
η ∈ (0, 1], τn+1 will not appear in the first η-fragment of π∗n+1.
To prove this sub-claim, we show that any tour π′n+1 of Tn+1

with τn+1 in the first η-fragment cannot be optimal by proposing
a lower cost tour πn+1. Let

π∗n = (τ1, τ2, . . . , τn)

πn+1 = (τ1, τ2, . . . , τn, τn+1)

π′n+1 = (τi1 , . . . , τir , τn+1, τir+1
, . . . , τin)

π′n = (τi1 , τi2 , . . . , τin).

Here, π∗n denotes the tour that minimizes cp for tasks Tn, πn+1

is the tour of tasks Tn+1 that services tasks according to π∗n and
then services τn+1, π′n+1 is any tour of tasks Tn+1 with τn+1

inserted after r ≤ ηn tasks, and π′n is the tour that is identical to
π′n+1 but with task τn+1 removed. To prove the sub-claim, we
will show that for large n, cp(πn+1) < cp(π′n+1). To this end,
let wi(π) denote the wait time of task τi in the tour π, and let Δ
the additional wait time of all tasks τj , j ≥ ir+1 incurred from
servicing τn+1 first in π′n+1. If Δ = 0 the claim is redundant to
the proof as new tasks can be serviced instantaneously without
increasing the wait time of any other task. Otherwise, Δ > 0,
and

cp(π′n+1)
p ≥

ir∑
j=i1

wp
j +

in∑
j=ir+1

(wi +Δ)p

≥
in∑

j=i1

wp
j + pΔ

in∑
j=ir+1

wp−1
i ≥ cp(π∗n)

p + pΔ(n− r)n
p−1
2 .

The above uses the fact that (A+B)p ≥ Ap + pBAp−1 for
all A,B ≥ 0, p ≥ 1 and wi ≥ ti ≥

√
n. Further, observe that

cp(πn+1)
p ≤ cp(π∗n)

p + (l(π∗n) +Q)p. Therefore, since r ≤
ηn, and ti ≤ cun

ν , it follows by Lemma 2 that

cp(π′n+1)
p − cp(π′n+1)

p ≥ pΔ(1− η)n
p+1
2 − (l(π∗n) +Q)p

≥ pΔ(1− η)n
p+1
2 − (C̄n

pν+1
2(p+1) +Q)p.

Finally, noting that p+1/2 > p(pν+1)/2(p+1), we have that
cp(π′n+1)

p − cp(π′n+1)
p ≥ 0 for large n establishing the sub-

claim. To prove the result of the Theorem, it suffices to show
that at every iteration of Algorithm 1, tmax ≤ ctn

ν
k for some

ct ≥ 0, ν ∈ [0, 1) since the result of the Theorem would follow
in an identical manner to the proof of Theorem 1. The proof
that tmax ≤ ctn

ν
k at every iteration k is largely omitted for

brevity, but we describe the structure. By strong induction on
the number of iterations, suppose that n tasks T old at iteration k
arrived before the start of iteration k − 1 but were not serviced
in that iteration. Then their wait time is at least ηl(π∗k−1) ≥
ηl(πTSP

k) ≥ η
√
n. Further, by the strong induction assumption,

tmax ≤ ctn
ν . Therefore, the conditions of the sub-claim hold

implying that the first η-fragment is comprised entirely of these

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2023 at 09:37:50 UTC from IEEE Xplore. Restrictions apply.

BOTROS et al.: OPTIMIZING TASK WAITING TIMES IN DYNAMIC VEHICLE ROUTING 5525

tasks. This continues until at most 1/η iterations when all the
tasks in T old are serviced. Indeed, in the worst case, if no tasks
in T old are serviced in 1/η iterations, we can show using the
above analysis that T old occupies the first n = η(n/η)-fragment.
On each iteration i before the tasks inT old have all been serviced,
they remain the oldest tasks in Ti, and can be shown to have a
maximum latent waiting time tmax ≤ βnν/ην using a similar
argument as Theorem 1. �

Finally, we prove the stability of the proposed policy.
Theorem 3 (Stability of Proposed Algorithm): For all load

factors ρ < 1, the proposed policy cp − BATCH with p ≥ 1, η >
0 is stable.

Proof: By Theorem 2, for sufficiently large nk, it holds
that l(π∗k) ≤ βnκ

k for constants β ≥ 0, κ ∈ [0, 1). Therefore,
E[l(π∗k)] ≤ βE[Nk]

κ by Jensen’s inequality. The remainder of
the proof is nearly identical to [7, Theorem 5.1] with E[l(π∗k)] ≤
K
√

E[Nk] replaced with E[l(π∗k)] ≤ βE[Nk]
κ. From (3) and

Theorem 1,

E[Nk+1] ≤ λQ+ ληβE[Nk]
κ + ρηE[Nk]

+ (1− η)E[Nk], (9)

In an identical manner to [7, Theorem 5.1], it can be shown that
E[Nk+1]→k E[Nk] which may be substituted in (3) to produce
a closed form constant bound on E[Nk]. �

In essence, Theorem 3 ensures that the number of unserviced
tasks remains bounded at all times, i.e., the policy is stable, and
thus the system does not become overburdened.

V. SIMULATION RESULTS

We demonstrate the performance of our proposed cp − BATCH
method in a series of numerical experiments, comparing it
against several state-of-the-art baselines.

Experiment setup: As our primary experiment, we consider
the single vehicle DVRP in the Euclidean plane, consistent
with the problem formulation and previous studies [6], [7]. In
a second experiment, we examine the multi-robot case and use
real-world data on a roadmap, i.e., a non-euclidean, non-convex,
non-symmetric environment. The stability results established
herein for the proposed method, and in [6], [7] for the BATCH,
η-BATCH methods do not apply under this setting since Assump-
tion 2 is violated. All tours were computed using the LKH-3
solver [38].

Baseline methods: We compare our approach against several
DVRP baselines: BATCH [6], η-BATCH [7], and DC-BATCH [7]
discussed in Section III-B. For η-BATCH we use η = 0.2, and for
DC-BATCH we use r = 10 sectors, consistent with [7]. Finally,
we also consider the event-triggered re-planning policy where
the cost function is the quadratic wait times (i.e., p = 2 in (1))
from [34], labelled as c2-EVENT.

A. Experiment 1 – Single Robot in the Euclidean Plane

The first simulation environment is a unit square with 3000
tasks and a uniform arrival distribution. Service times are mod-
eled as a Gaussian with a mean of 1 and a standard deviation
of 0.1. We begin by considering a single robot moving at speed
v = 1. We notice that since the multi-robot case is solved by
partitioning the environment and then solving a single-robot
DVRP in each partition, the results generalize trivially to multi-
ple robots [7].

Fig. 3. Experiment 1: Comparison against baselines in the Euclidean environ-
ment, showing wait times as a function of the load factor ρ. Boxes and whiskers
show the four quartiles over all trials, mean wait times are indicated by the green
triangle.

a) Algorithm parameters: The proposed method has two
hyper-parameters: the cost exponent p and the batch fragment
η. In general, smaller values of η allow for more frequent
re-planning and thus better performance; the stability result
still applies provided η > 0. We choose η = 0.05, which is
significantly lower than the proposed value of 0.2 from [7].
Empirically, we found that a value of p = 1.5 provides the best
performance in terms of mean, median, and as well as number
of outliers. Thus, we use η = 0.05 and p = 1.5 for the proposed
approach, simply denoted as PROPOSED.

b) Comparison against baselines: Fig. 3 illustrates the
resulting wait times for the proposed approach and the baselines.
As the load factor increases towards ρ = 0.9, all baseline BATCH
methods show an increase in mean and variance compared to
the PROPOSED. The numerical results, found in Table I, addi-
tionally include a method denoted PROPOSED η = 0.2, identical
to PROPOSED (i.e., p = 1.5), but with η = 0.2 as in η-BATCH
from [7]. We include this method to explicitly illustrate that
any improved performance of PROPOSED over η − BATCH is not
simply due to the fact that PROPOSED features a smaller value
of η. We observe that under loads from ρ = .5 and ρ = .6, the
different methods perform relatively similarly, only η − BATCH
shows a higher mean and upper end of the distributions. The
method PROPOSED and PROPOSED η = 0.2 provide a consis-
tently better performance than all baselines with exception of
c2-EVENT. While the smaller η = 0.05 used in PROPOSED gives
an additional performance boost, the principal improvement
comes from the proposed cost function. The mean wait times
averaged over all workloads are increased by factors 1.39 for
BATCH, 2.14 for η-BATCH, 1.28 for DC-BATCH, and 1.002 for c2-
EVENT, compared to PROPOSED. Further, all approaches exhibit
large deviations from the mean. However, PROPOSED is always
among the best with respect to variances, medians and 75th%.

In summary, the proposed method shows substantial improve-
ments in mean and maximum wait times compared to all other
BATCH methods. Moreover, c2-EVENT – which possesses no
stability guarantees – only achieves the same performance as
the proposed approach, despite re-planning more frequently.

B. Experiment 2 – Multiple Robots With Real-World Data Set

As a further illustration of the applicability of our method, we
simulate task arrivals for an on-site service technician based on
historical 3–1–1 calls in Montreal-Nord, a borough of the city
of Montreal, Canada [39] (see Fig. 4). For this experiment, we

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2023 at 09:37:50 UTC from IEEE Xplore. Restrictions apply.

5526 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

TABLE I
RESULTS FOR EXPERIMENT 1

TABLE II
RESULTS FOR EXPERIMENT 2, SEPARATED BY REGION

Fig. 4. Non-emergency assistance requests in the borough of Montréal-Nord,
Montréal, Canada, between 2017-2019 [39]. (a): Map with the request density
expressed as a heat map. (b): Partitions and depot locations.

deploy a fleet of m = 6 robots to service 5000 tasks. Thus, we
divide the environment into 6 partitions using a k-nearest clus-
tering of the request locations, shown in Fig. 4(b). Despite not
guaranteeing equitable partitions, k-nearest methods are widely
used in practise. All map data taken from OpenStreetMaps1. The
average travel time over the entire map is 296 s, service times
are drawn from a normal distribution with a mean of 10 min and
variance of 3 min. We used an overall load factor of ρ = .74,
selected to guarantee ρ < 1 within each partition.

Results are shown in Fig. 5 and Table II. We observe that
since the used partitioning technique is not equitable the wait
times vary significantly between partitions. In fact, the load
in partitions 1 and 2 is at the lower end of moderate load
(≈ .6), while partition 6 reaches a single-robot load factor of. 99.
Nonetheless, for all partitions the proposed method achieves the
lowest mean, and with exception of region 1 and 6 the lowest95th

1Map data copyrighted OpenStreetMap contributors and available from https:
//www.openstreetmap.org

Fig. 5. Experiment 2: Comparison against baselines. Wait times for a load
factor ρ = 0.74, separated by partition. Boxes and whiskers show the four
quartiles over all trials, mean wait times are indicated by the green triangle.

percentile. Mean wait times are reduced by 20% compared to
the best baseline (DC-BATCH), i.e., 30 min. Moreover, we notice
that the advantage of our method increases for the partitions
under higher loads. In summary, we have shown the proposed
method also effectively improves task wait times in a real-world
multi-robot setting.

VI. CONCLUSION

We revisited the classic Dynamic Vehicle Routing Problem
for stochastic arrivals. We proposed a new BATCH policy that
seeks to minimize both average and maximum wait times and
showed that this policy is stable even under heavy loads. In
simulations we showed that the proposed method outperforms
existing baseline policies under various moderate load settings
(ρ ∈ [0.5, 0.9]). The baseline of event-triggered re-planning, c2-
EVENT, with a quadratic cost shows a performance comparable
to ours in the Euclidean case, yet this method is computationally
more burdensome and does not come with theoretical guarantees
on stability. Future work should investigate the applicability

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2023 at 09:37:50 UTC from IEEE Xplore. Restrictions apply.

https://www.openstreetmap.org
https://www.openstreetmap.org

BOTROS et al.: OPTIMIZING TASK WAITING TIMES IN DYNAMIC VEHICLE ROUTING 5527

of the proposed p-norm cost for other variants of DVR, such
as pick-up-and-delivery where the problem cannot be cast into
several single-robot instances.

REFERENCES

[1] P. Grippa, D. A. Behrens, F. Wall, and C. Bettstetter, “Drone delivery
systems: Job assignment and dimensioning,” Auton. Robots, vol. 43, no. 2,
pp. 261–274, 2019.

[2] K. Gao and J. Yu, “Capacitated vehicle routing with target geometric
constraints,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021,
pp. 7925–7930.

[3] G. Zardini, N. Lanzetti, M. Pavone, and E. Frazzoli, “Analysis and control
of autonomous mobility-on-demand systems,” Annu. Rev. Control, Robot.,
Auton. Syst., vol. 5, pp. 633–658, 2022.

[4] R. Zhang and M. Pavone, “Control of robotic mobility-on-demand sys-
tems: A queueing-theoretical perspective,” Int. J. Robot. Res., vol. 35,
no. 1/3, pp. 186–203, 2016.

[5] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, “On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment,”
Proc. Nat. Acad. Sci., vol. 114, no. 3, pp. 462–467, 2017.

[6] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic vehi-
cle routing for robotic systems,” Proc. IEEE, vol. 99, no. 9, pp. 1482–1504,
Sep. 2011.

[7] M. Pavone, E. Frazzoli, and F. Bullo, “Adaptive and distributed algorithms
for vehicle routing in a stochastic and dynamic environment,” IEEE Trans.
Autom. Control, vol. 56, no. 6, pp. 1259–1274, Jun. 2011.

[8] O. Ozkan and M. Kaya, “UAV routing with genetic algorithm based
matheuristic for border security missions,” Int. J. Optim. Control: Theories
Appl., vol. 11, no. 2, pp. 128–138, 2021.

[9] Y. Liu, “An optimization-driven dynamic vehicle routing algorithm for on-
demand meal delivery using drones,” Comput. Operations Res., vol. 111,
pp. 1–20, 2019.

[10] A. Sadeghi and S. L. Smith, “Re-deployment algorithms for multiple
service robots to optimize task response,” in Proc. IEEE Int. Conf. Robot.
Automat., 2018, pp. 2356–2363.

[11] N. Wilde and J. Alonso-Mora, “Online multi-robot task assignment with
stochastic blockages,” in Proc. IEEE 61st Conf. Decis. Control, 2022,
pp. 5259–5266.

[12] M. Chandarana, D. Hughes, M. Lewis, K. Sycara, and S. Scherer, “Plan-
ning and monitoring multi-job type swarm search and service missions,”
J. Intell. Robot. Syst., vol. 101, pp. 1–14, 2021.

[13] M. J. Sousa, A. Moutinho, and M. Almeida, “Decentralized distribution of
UAV fleets based on fuzzy clustering for demand-driven aerial services,”
in Proc. IEEE Int. Conf. Fuzzy Syst., 2020, pp. 1–8.

[14] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Monitor-
ing and sweeping in changing environments,” IEEE Trans. Robot., vol. 28,
no. 2, pp. 410–426, Apr. 2012.

[15] D. J. Bertsimas and G. Van Ryzin, “A stochastic and dynamic vehicle
routing problem in the Euclidean plane,” Operations Res., vol. 39, no. 4,
pp. 601–615, 1991.

[16] S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli, “Dynamic vehicle routing
with priority classes of stochastic demands,” SIAM J. Control Optim.,
vol. 48, no. 5, pp. 3224–3245, 2010.

[17] S. Bajaj and S. D. Bopardikar, “Dynamic boundary guarding against
radially incoming targets,” in Proc. IEEE Conf. Decis. Control, 2019,
pp. 4804–4809.

[18] W. Whitt, “Understanding the efficiency of multi-server service systems,”
Manage. Sci., vol. 38, no. 5, pp. 708–723, 1992.

[19] D. J. Bertsimas and G. Van Ryzin, “Stochastic and dynamic vehicle
routing with general demand and interarrival time distributions,” Adv. Appl.
Probability, vol. 25, no. 4, pp. 947–978, 1993.

[20] S. Sudhakar, V. Vijayakumar, C. S. Kumar, V. Priya, L. Ravi, and V.
Subramaniyaswamy, “Unmanned aerial vehicle (UAV) based forest fire
detection and monitoring for reducing false alarms in forest-fires,” Comput.
Commun., vol. 149, pp. 1–16, 2020.

[21] H. N. Psaraftis, “Dynamic vehicle routing problems,” Veh. Routing: Meth-
ods Stud., vol. 16, pp. 223–248, 1988.

[22] H. N. Psaraftis, “A dynamic programming solution to the single vehi-
cle many-to-many immediate request dial-a-ride problem,” Transp. Sci.,
vol. 14, no. 2, pp. 130–154, 1980.

[23] B. H. O. Rios, E. C. Xavier, F. K. Miyazawa, P. Amorim, E. Curcio, and M.
J. Santos, “Recent dynamic vehicle routing problems: A survey,” Comput.
Ind. Eng., vol. 160, 2021, Art. no. 107604.

[24] D. Aksaray, C.-I. Vasile, and C. Belta, “Dynamic routing of energy-aware
vehicles with temporal logic constraints,” in Proc. IEEE Int. Conf. Robot.
Automat., 2016, pp. 3141–3146.

[25] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scLTL motion planning for mobility-on-demand,” in Proc. IEEE
Int. Conf. Robot. Automat., 2017, pp. 1481–1488.

[26] C. Sarkar, H. S. Paul, and A. Pal, “A scalable multi-robot task al-
location algorithm,” in Proc. IEEE Int. Conf. Robot. Automat., 2018,
pp. 5022–5027.

[27] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle routing
problems: Three decades and counting,” Networks, vol. 67, no. 1, pp. 3–31,
2016.

[28] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applica-
tions. Philadelphia, PA, USA: SIAM, 2014.

[29] N. Soeffker, M. W. Ulmer, and D. C. Mattfeld, “Stochastic dynamic vehicle
routing in the light of prescriptive analytics: A review,” Eur. J. Oper. Res.,
vol. 298, pp. 801–820, 2021.

[30] S. D. Bopardikar and V. Srivastava, “Dynamic vehicle routing in presence
of random recalls,” IEEE Control Syst. Lett., vol. 4, no. 1, pp. 37–42,
Jan. 2020.

[31] A. M. Campbell, D. Vandenbussche, and W. Hermann, “Routing for relief
efforts,” Transp. Sci., vol. 42, no. 2, pp. 127–145, 2008.

[32] M. Huang, K. Smilowitz, and B. Balcik, “Models for relief routing: Equity,
efficiency and efficacy,” Transp. Res. Part E: Logistics Transp. Rev., vol. 48,
no. 1, pp. 2–18, 2012.

[33] M. Kulich, L. Přeučil, and J. J. M. Bront, “On multi-robot search for a
stationary object,” in Proc. Eur. Conf. Mobile Robots, 2017, pp. 1–6.

[34] F. Ferrucci and S. Bock, “A general approach for controlling vehicle en-
route diversions in dynamic vehicle routing problems,” Transp. Res. Part
B: Methodological, vol. 77, pp. 76–87, 2015.

[35] M. Chandarana, M. Lewis, K. Sycara, and S. Scherer, “Determining
effective swarm sizes for multi-job type missions,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2018, pp. 4848–4853.

[36] J. Beardwood, J. H. Halton, and J. M. Hammersley, “The shortest path
through many points,” in Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 55. Cambridge, U.K.: Cambridge Univ. Press,
1959, pp. 299–327.

[37] M. Haimovich and A. H. Rinnooy Kan, “Bounds and heuristics for
capacitated routing problems,” Math. Operations Res., vol. 10, no. 4,
pp. 527–542, 1985.

[38] K. Helsgaun, An Extension of the Lin-Kernighan-Helsgaun TSP Solver for
Constrained Traveling Salesman and Vehicle Routing Problems. Roskilde,
Denmark: Roskilde Univ., 2017.

[39] Government and Municipalities of Québec, “3-1-1 Requests (archives
2016-2019),” Citizen Serv. Requests (311 Requests), 2023. [Online]. Avail-
able: https://open.canada.ca/data/en/dataset/5866f832-676d-4b07-be6a-
e99c21eb17e4

Authorized licensed use limited to: TU Delft Library. Downloaded on September 06,2023 at 09:37:50 UTC from IEEE Xplore. Restrictions apply.

https://open.canada.ca/data/en/dataset/5866f832-676d-4b07-be6a-e99c21eb17e4
https://open.canada.ca/data/en/dataset/5866f832-676d-4b07-be6a-e99c21eb17e4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

