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Abstract— In this paper, we address the problem of real-time
motion planning for multiple robotic manipulators that operate
in close proximity. We build upon the concept of dynamic
fabrics and extend them to multi-robot systems, referred to as
Multi-Robot Dynamic Fabrics (MRDF). This geometric method
enables a very high planning frequency for high-dimensional
systems at the expense of being reactive and prone to deadlocks.
To detect and resolve deadlocks, we propose Rollout Fabrics
where MRDF are forward simulated in a decentralized manner.
We validate the methods in simulated close-proximity pick-
and-place scenarios with multiple manipulators, showing high-
success rates and real-time performance.

Code, video: https://github.com/tud-amr/multi-robot-fabrics

I. INTRODUCTION

In several domains, such as manufacturing, medicine, and
agriculture, it is common to have multiple manipulators
operating in close proximity to each other. This arrangement
improves efficiency and enables the successful execution of
complex tasks [1]. However, when operating in dynamic
environments, where conditions and obstacles can change,
determining viable trajectories for multiple robots becomes
challenging. Unlike static environments where all informa-
tion can be pre-computed, dynamic environments require
real-time planning to operate robots safely and efficiently.

Multi-robot motion planning can be addressed using two
main approaches: coupled and decoupled methods. Coupled
approaches can provide optimal solutions, but they often
suffer from high computational costs, especially when deal-
ing with large numbers of robots with many degrees of
freedom (DOF) [2]. On the other hand, decoupled approaches
offer more scalability but cannot guarantee optimality. In
dynamic environments, the ability to adapt online in real-
time becomes essential.

However, even decoupled motion planning becomes chal-
lenging for complex systems. While optimization-based ap-
proaches such as Model Predictive Control (MPC) have been
widely adopted for mobile robots, their high computational
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Fig. 1: Multi-robot pick-and-place scenario in close proximity.
Franka Emika Pandas pick cubes avoiding collisions.

costs make them less suitable for high-dimensional config-
uration spaces [3], [4], [5]. Data-driven approaches can be
utilized to speed up the optimization process [5], however,
they often lack generalization capabilities and necessitate
costly data acquisition processes [6].

In contrast, geometric approaches to local motion plan-
ning, such as Riemannian Motion Policies [7], [8] and
geometric fabrics [9], offer superior scalability and thus high
reactivity [10]. With geometric fabrics, or fabrics for short,
different components, such as collision avoidance and joint
limit avoidance, are combined using Riemannian metrics,
allowing for an iterative behavior design. Because fabrics
parse local motion planning into a differential equation of
second order, the solution can be computed before runtime
in a symbolic way [10], thus saving computational costs
during execution. This enables higher replanning frequen-
cies making them advantageous for complex systems in
dynamic environments. Furthermore, fabrics inherently pro-
mote asymptotic stability, which adds to their appeal as a
framework for reactive motion planning.

Fabrics, but also their predecessor Riemannian Motion
Policies, have shown impressive results in several manipu-
lator applications, including dynamic and crowded environ-
ments [11], [12]. Recently, fabrics have been generalized to
dynamic scenarios and referred to as dynamic fabrics [10].
As a drawback to highly reactive behavior, fabrics are prone
to local minima [10], this is especially harmful in multi-robot
scenarios where deadlocks are even more common than in
single-robot applications.

This work focuses on the development of an online local
motion planning algorithm to facilitate the simultaneous
operation of multiple high DOF manipulators within a shared
workspace. Our particular investigation revolves around the
utilization of dynamic fabrics in multi-robot systems, specifi-

https://github.com/tud-amr/multi-robot-fabrics


cally in the context of close-proximity pick-and-place scenar-
ios. To the best of the authors’ knowledge, fabrics have not
yet been employed within the context of multi-robot systems.
To tackle the challenges associated with close-proximity ma-
nipulation scenarios, we introduce a concept called Rollout
Fabrics (RF). This approach involves simulating the forward
motion of multi-robot fabrics over a prediction horizon,
enabling the detection of potential deadlocks. We propose a
heuristic method to address the identified deadlocks, which
involves adapting the goal-reaching parameters of the fabric
formulation. To this end, our contributions are as follows:

• Extension of dynamic fabrics to multi-robot systems
for high-DOF manipulators, referred to as Multi-Robot
Dynamic Fabrics (MRDF),

• RF, an approach to forward simulate MRDF enabling
detection of future deadlocks or other undesired states,

• A heuristic approach for the resolution of deadlocks,
• Validation in simulation in close-proximity pick-and-

place scenarios with high-DOF manipulators.

II. RELATED WORK

A. Multi-Robot Motion Planning

Regardless of the specific employed local motion planning
algorithm, methods for multi-robot motion planning can be
classified into two categories: coupled approaches and de-
coupled approaches. Coupled approaches compute the plans
of all robots simultaneously and often provide guarantees
regarding feasibility and optimality at the expense of a
high computational burden. Decoupled planners solve a sub-
problem in isolation enabling rapid computation of feasible
plans and relaxing communication requirements. However,
they lack guarantees of completeness and optimality [13].

Commonly used motion planning algorithms are sampling-
based and optimization-based approaches, or combinations of
both methods [14]. Sampling-based planners are well-suited
for high-dimensional configuration spaces, making them a
suitable choice for multi-robot systems. Rapidly exploring
random trees (RRT) [15] and the probabilistic roadmap
method (PRM) [16] can be extended to multi-robot systems
by considering the robots as a single multi-arm robot or plan-
ning for each robot individually and adapting the velocities to
avoid collisions [17]. Further extensions improving efficiency
are dRRT [13] which considers an implicit representation of
a tensor product of roadmaps for the individual robots and
its informed extension dRRT* [18]. Sampling-based methods
are primarily used for static environments, where trajectories
are initially planned for a specific task and then executed and
thus mainly employed for offline motion planning.

Optimization-based planners [19] commonly take into
account dynamic feasibility as well as static and dynamic col-
lision avoidance as constraints. Since an increasing number
of constraints can lead to a significant increase in computa-
tional cost, it is crucial to efficiently implement constraints.
One commonly utilized optimization-based motion planner
is MPC [20] which solves the optimization problem in a
receding horizon manner, thereby continuously updating and

optimizing the plan as new information becomes available.
For multi-robot motion planning, MPC can be applied in a
centralized [21] or distributed [22], [23] fashion. Since the
centralized MPC solves a coupled optimization problem, it
has limited scalability [2]. This motivates the development of
distributed MPC formulations where each robot optimizes its
own motion while considering the predicted behavior of the
other robots. For instance, [23] present a distributed MPC ap-
proach formulated as a non-cooperative game that focuses on
collision avoidance between multiple manipulators. However,
their approach requires communication of the (extrapolated)
predicted joint states of all neighbor robots at each time
instance. To avoid the costly solution of a constrained
optimization problem, the planning problem can be phrased
as a purely geometric problem. Such methods fall into the
field of geometric control. In a comparative study, it was
shown that fabrics, a form of geometric control, outperform
MPC in terms of collision avoidance and computation time
for mobile manipulators [10].

Thus, in this work, we make use of the lightweight
structure of optimization fabrics in a multi-robot setting.
The fabrics formulation of the other robots only needs to
be communicated once at the beginning of each task. Then
at each time step, only the current configuration, velocity and
goal information of the other robots must be communicated
among the robots. We further present approximations that
can be used to reduce communication.

B. Geometric Control for Single-Robot Scenarios

Operational space control, a control method applied to
robotic systems, enables natural control of kinematically
redundant robots [24], [25]. It was formalized in geometric
control, which utilizes differential geometry to achieve stable
and converging behavior [26]. Recently, Riemannian Motion
Policies (RMP) introduced a trajectory generation method for
manipulation tasks, allowing composability by separating the
importance metric and forcing term [7], [8]. Optimization
fabrics were later introduced to fully decouple the impor-
tance metrics and defining geometry, ensuring guaranteed
convergence with simple construction rules [9], [12], [27],
[28]. In [10], optimization fabrics are extended towards
Dynamic Fabrics (DF) which incorporate path following and
collision avoidance with moving obstacles. By proposing
dynamic pullback operations, relative coordinate frames are
explored introducing relative task positions, velocities, and
accelerations. Convergence is guaranteed if the reference is
bounded. Here we build upon optimization fabrics and DF
and extend them to multi-robot environments.

III. PRELIMINARIES

In this section, we provide a concise introduction to the
fundamental concepts necessary for trajectory generation
using fabrics. We first specify the required notations III-
A, then we present spectral semi-sprays III-B and their
operations III-C which build the foundations for optimization
fabrics III-D and DF III-E. For a more detailed overview
of fabrics and their theoretical foundations in differential



geometry, we refer to [9], [11] and for DF to [10]. We further
state the problem formulation for multi-robot fabrics III-F.

A. Notations

We use qt ∈ C to denote the configuration of a robot
at time t. Here, C is the robot’s configuration space of
dimension n = DOF . Similarly, q̇t and q̈t define the cor-
responding instantaneous derivatives. To improve readability
we will neglect the subscript t in the following.

We define a set of M task variables xj ∈ Xj for j ∈
[M ] with variable dimension mj ≤ n. We use the shorthand
notation [M ] to denote {j ∈ N : j ≤ M}. A differential
map ϕj : C → Xj with xj = ϕj(q) relates the configuration
space of a robot to the j-th task space. For instance, if a
task variable is defined as the end-effector position, then ϕj

is the positional part of the forward kinematics (fk). If a
task variable is defined as the joint position, then ϕj is the
identity function. We assume that ϕj is smooth and twice
differentiable and denote the map’s Jacobian as Jϕj

=
∂ϕj

∂q or
Jϕj = ∂qϕj for short. Thus, we can write the time derivatives
of xj as ẋj = Jϕj q̇ and ẍ = Jϕj q̈+J̇ϕj q̇. In the following,
the subscript j is dropped to improve readability.

B. Spectral Semi-Sprays

Drawing inspiration from fundamental mechanics, opti-
mization fabrics formulate motion policies as second-order
dynamical systems, denoted by ẍ = π(x, ẋ) [8], [9]. The
motion policies are described by the differential equation
M(x, ẋ)ẍ + f(x, ẋ) = 0, where the matrix M(x, ẋ)
is symmetric and invertible, and M(x, ẋ) and f(x, ẋ)
depend on position and velocity variables. These second-
order dynamical systems are referred to as spectral semi-
sprays or simply specs S = (M ,f)X . We drop the spec-
subscript if the task manifold is clear from the context.

C. Operations on Spectral Semi-Sprays

The generation of complex trajectories involves various
components, including collision avoidance and joint limits
avoidance. In order to address these aspects, optimization
fabrics utilize a weighted summation of metrics, enabling the
integration of multiple components originating from different
manifolds. The following operations, derived from operations
on specs, play a crucial role in this process:

Energization: A spec can be energized by incorporating
Lagrangian energy, effectively equipping the spec with a
metric. This process involves a spec of the form Sh = (I,h)
with identity matrix I , a geometry defining term h, and an
energy Lagrangian Le with the derived equations of motion
MLe

ẍ + fLe
= 0. The operation of energization can be

defined as follows:

SLe

h = energizeLe
Sh

= (MLe ,fLe + PLe [MLeh− fLe ]),
(1)

Here, PLe = MLe

(
M−1

Le
− ẋẋT

ẋTMLe ẋ

)
represents an or-

thogonal projector. The resulting energy-conserving spec is
referred to as an energized spec, the operation itself is known
as energization. The energized system follows the same path

and differs only by an acceleration along the direction of
motion.

Pullback: Given a differential map ϕ : C → X and a spec
(M ,f)X , the pullback is defined as

pullϕ(M ,f)X =
(
JT
ϕMJϕ,J

T
ϕ (f + J̇ϕq̇)

)
C
. (2)

The pullback allows conversion between two distinct mani-
folds. For example, a spec defined in the robot’s workspace
can be pulled into the robot’s configuration space using the
pullback with ϕ representing the forward kinematics.

Summation: For two specs, S1 = (M1,f1)C and S2 =
(M2,f2)C , their summation is defined as:

S1 + S2 = (M1 +M2,f1 + f2)C . (3)

We denote the combined spec as S̃ = (M̃ , f̃)C .
By leveraging spectral semi-sprays and the aforementioned

operations, joint limit avoidance, collision avoidance, or self-
collision avoidance can be achieved.

D. Optimization Fabrics

Above, we discussed the combination of tasks that can
be used for combining different avoidance behaviors. Ad-
ditionally, spectral semi-sprays can be influenced by a po-
tential, where Sψ = (M ,f + ∂xψ) is known as the forced
spec. The solution x(t) of the forced spec Sψ converges
to the minimum of the potential ψ(x) if constructed via
the guidelines of optimization fabrics. The construction of
optimization fabrics involves the following steps:
1) Creation: The initial spec representing an avoidance
component is formulated in the form ẍ + h(x, ẋ) = 0. In
this formulation, h is homogeneous of degree 2, meaning
that h(x, αẋ) = α2h(x, ẋ).
2) Energization: The spec’s geometry is energized using a
Finsler structure [9, Definition 5.4] through the energization
operation in Eq. 1. The combination of homogeneity of
degree 2 and energization with the Finsler structure guaran-
tees, as stated in [9, Theorem 4.29], that the energized spec
forms a frictionless fabric. A frictionless fabric is defined
as optimizing the forcing potential ψ while being damped
by a positive definite damping term [9, Definition 4.4]. As a
result, the trajectory converges to a local minima if damped.
3) Combination: All avoidance components are combined
in the configuration space of the robot using the pullback
and summation operations. Note that both operations are
closed under the algebra designed by these operations. In
other words, every pulled optimization fabric or the sum of
two optimization fabrics is itself an optimization fabric.
4) Forcing: In the final step, the combined spec is forced by
the potential ψ to the desired minimum with attractor weight
γ and damped with a positive definite constant damping
matrix B. This results in a system of the form

M̃(q, q̇)q̈ + f̃(q, q̇) + γ∂qψ +Bq̇ = 0. (4)

Solving Eq. (4) yields to the trajectory generation policy
in acceleration form q̈ = π̃(q, q̇). In the following, we will
refer to optimization fabrics by [9] as Static Fabrics (SF)



since the formulation relies on the assumption that obstacles
are static at each time step.

E. Dynamic Fabrics

Recently, DF have been proposed to handle dynamic
environments, such as moving obstacles and reference path
tracking [10]. By introducing a dynamic pull-back operation,
relative coordinate systems, xrel = x−x̄, can be exploited to
integrate the velocity and acceleration of moving obstacles.
This operation is defined as

pullϕd
(Md,fd)Xrel

= (Md,fd −Md ¨̄x)X , (5)

where Xrel is the relative task manifold and ¨̄x is the ac-
celeration of the moving obstacle. This dynamic pull-back
alongside the dynamic energization effectively renders the
spec (Md,fd)Xrel

dependent on x̄ and ˙̄x. For clarity, we
will refer to (x̄, ˙̄x, ¨̄x) as (xobs, ẋobs, ẍobs) to indicate the
position, velocity, and acceleration of the moving obstacles.
For simplicity, acceleration dependency is often disregarded.

F. Multi-Robot Problem Formulation

In previous works, SF and DF were presented for single-
robot scenarios. Here, we formulate the multi-robot case as a
decentralized collision avoidance problem. Consider a multi-
robot scenario with N robots with possibly different DOF,
moving in close proximity in a shared workspace W ⊆ R3.
We introduce the superscript i to refer to the i-th robot.

Problem 1: (Decentralized Multi-Robot Fabrics)
In the decentralized case, each robot i minimizes its own

acceleration based on the states of the other robots ¬i,

π̃i(qi, q̇i) = q̈i =
(
M̃ i

)−1 (
f̃ i + γi∂qiψ

i + βq̇i
)
, (6)

where M̃ i and f̃ i are dependent on the current configura-
tion and velocity of the robot as well as the states of the other
robots ¬i. In the following section, decentralized multi-robot
fabrics are discussed in more detail and multi-robot collision
avoidance is defined.

IV. METHOD

In this section, we address multi-robot motion planning
using fabrics as stated in Problem 1. We first derive the
collision avoidance formulation and present Multi-Robot
Dynamic Fabrics (MRDF) in Section IV-A. In Section IV-
B Rollout Fabrics (RF) are introduced to detect future
deadlocks. Lastly, we present a heuristic approach to resolve
the deadlocks in Section IV-C.

A. Multi-Robot Dynamic Fabrics

We first derive the collision-avoidance formulation for
MRDF which requires the configurations and velocities of
the other robots. These can be determined using a perception
pipeline or through communication. Below, we only describe
collision avoidance between robots, as the integration of
static obstacles, dynamic obstacles, and joint limit avoidance
were presented in [10] and [9].

We approximate each robot using collision spheres, see
Fig. 1, with a center xi

obs,l and radius riobs,l for l ∈ [Li]

where Li is the number of collision spheres per robot.
The collision obstacles for robot i are thus all collision
spheres of the other robots, which is a total number of
Oi =

∑N
p=1,p̸=i L

p. For each collision avoidance task j ∈
[LiOi] with relative task variable xi

rel,j = x
i
obs,l−x

p
obs,l for

p ̸= i, we consider a geometry ẍrel,j+h(xrel,j , ẋrel,j) = 0.
We derive the positions and velocities of the collision

spheres using the forward kinematics and Jacobians, xp
obs,l =

fk l(q
p), ẋp

obs,l = Jlq̇
p. Thus, Eq. (6) becomes dependent on

the state of all other robots resulting in

π̃i(qi, q̇i, q¬i, q̇¬i,θi,θ¬i). (7)

With a slight abuse of notation compared to Eq. (6) we
explicitly add the dependency of π̃ to parameter vectors θi

and θ¬i, e.g., the goal position pgoal and attractor weight γ.
We refer to this equation as MRDF which is solved by

every robot given that the configuration and velocity of the
other robots are communicated, observed, or estimated. In
the following, we describe our proposed method to overcome
deadlocks that are likely to occur in this naive approach.

B. Rollout Fabrics

In this section, we introduce the notion of RF, an approach
to forward propagate MRDF over a prediction horizon en-
abling the detection of deadlocks by forward propagating
MRDF. Since fabrics are a lightweight representation that
can easily be communicated, each robot can transmit its
symbolic fabrics policy π̃i in the beginning of the interaction.
We first assume that the current configuration and velocity,
and goal configuration of all other robots are available at
run-time. As mentioned before, this can be either observed or
communicated. Later, we will relax this assumption. Without
loss of generality, we refer to the current time step as k = 0.
Each robot i ∈ [N ] propagates its own MRDF and the MRDF
formulation of the other robots ¬i forward over K discrete
steps covering the horizon T = K∆t.

To enhance clarity, we will now outline the approach from
the perspective of the ego-robot i. At each step k, the ego-
robot i computes its action q̈ik using Eq. 7. The actions of the
other robots q̈¬i

k are derived using the communicated MRDF
formulations. Then, the configurations and velocities of each
robot i ∈ [N ] at k+1 are computed given the configuration
and velocities at step k, the action q̈ik and their respective
goal configuration. To avoid the need for simulating the
complex dynamics of each robot, we approximate future
configurations and velocities using a second-order integrator:[

qik+1

q̇ik+1

]
=

[
In ∆tIn
0n In

]
︸ ︷︷ ︸

A

[
qik
q̇ik

]
+

[
0n

∆tIn

]
︸ ︷︷ ︸

B

q̈ik, (8)

with identity matrix In of size n×n and time-step ∆t. The
proposed approach is summarized in Algorithm 1.

Instead of communicating the goal configuration every
time the goal has changed, it can constantly be estimated
by assuming a constant velocity for the end effector,

p̃goal = xee +H∆tvee, (9)



where xee and vee are the end effector position and velocity,
respectively. The integer scaling factor H determines the
duration for which the constant velocity model predicts the
future goal. RF considering the estimated goal p̃goal are in
the following referred to as RF-CV.

The rollouts provide us with a set of configuration, veloc-
ity, and acceleration estimates along T , which can be used to
detect deadlocks. We apply a heuristic that detects deadlocks
where at least two robots have average velocities along the
prediction horizon v̄i = 1

K

∑K
k=0∥q̇ik∥2 below the threshold

vd,min. An additional condition for a deadlock is that the
position of the end-effectors xee of the robots have to be
within a distance dee,c from each other. Thus, a deadlock is
detected if the following condition holds for any p ̸= i:(

v̄i < vd,min ∧ v̄p < vd,min

)
∧
(
∥xi

ee − xp
ee∥2 < dee,c

)
.

(10)
If no deadlock is present, the ego-robot’s action is the
acceleration q̈i0. A deadlock is assumed to be resolved when
the predicted velocities are above the velocity minimum,
vd,min and a time of td,min has passed, or when one
of the robots has reached its goal. The time requirement
is introduced to avoid the robots from switching between
normal and deadlock-resolving behavior.

Since we can approximate the current configurations and
velocities of the other robots with RF, it is not required
for each robot to communicate this at each time step.
Instead, these can be communicated at a lower frequency
and approximated using forward propagation if no current
information is available.

Algorithm 1 Rollout Fabrics

Input: (qi
0, q̇

i
0) = (qi

t, q̇
i
t), ∀i ∈ [N ] ▷Initialization

for k = 0 : K do
xi

obst = fk l(q
i
k, q̇

i
k), ∀i ∈ [N ] ▷ obstacle positions

ẋi
obst = Jl(q

i
k, q̇

i
k), ∀i ∈ [N ] ▷ obstacle velocities

q̈i
k = π̃i(qi, q̇i, q¬i, q̇¬i,θi,θ¬i), ∀i ∈ [N ] ▷ MRDF[
qi
k+1

q̇i
k+1

]
= A

[
qi
k

q̇i
k

]
+Bq̈i

k, ∀i ∈ [N ] ▷ Model

end for
deadlock = Eq. 10 ▷ Detect deadlock

C. Resolving Deadlocks

Here, we describe how the detected deadlocks can be
addressed using a heuristic approach, which is summarized
in Algorithm 2 for the two-robot case. If a deadlock is
detected, a hierarchy is defined and communicated, based
on the proximity of the robots to their respective goal or
at random for a perfectly symmetric scenario. With this
method, we do not claim completeness to resolve all possible
deadlocks. Note that if all robots apply the same heuristic
and the configurations and desired goals of the other robots
are known, the hierarchy does not need to be communicated.

To resolve a deadlock, the lower-priority robot’s goal is set
opposite to the higher-prioritized robot’s goal, goal low().
Additionally, the weight for goal-reaching γ of the higher-
prioritized robot is increased to γhigh.

Algorithm 2 Resolving deadlocks
if deadlock then

glow priority = goal low(q), ▷ Change goal
γpriority = γhigh, ▷ Change weight
q̈t = π̃(qi

t, q̇
i
t, q

¬i
t , q̇¬i

t ,θi,θ¬i), ∀i ∈ [N ] ▷ MRDF
else

q̈t = q̈0, ▷ Apply first action
end if

V. RESULTS

Here, we assess the performance of RF with deadlock
resolution heuristics and compare them against MRDF. For
a comparison between fabrics and MPC, we refer to [10].

A. Experimental Setup and Performance Metrics

We consider multi-robot close-proximity pick-and-place
scenarios as illustrated in Figure 1 and 2 and the video.
Specifically, we apply multiple 7 DOF Franka Emika Pandas
that are tasked to pick up their assigned cubes from a table
and place them in a tray. Simulations are performed using the
Pybullet physics simulation [29] and the open source toolbox
urdfenvs. In the experiments, besides multi-robot collision
avoidance, collision avoidance between each robot and the
table is considered, as well as joint limit avoidance. The
robots each have to pick and place two cubes. To evaluate
the performance we consider the below metrics for a two-
robot scenario with randomized initial cube positions:

• Success Rate: The ratio of successfully grasped and
placed cubes within the time window Tmax over the
total number of cubes.

• Time-to-Success: Time to complete the pick-and-place
scenario for all robots successfully.

• Collision Rate: Ratio of scenarios where at least one
collision has occurred over all runs. A collision is
registered if any collision sphere of a robot collides
with either the environment or the collision spheres of
the other robot.

• Minimum Clearance: Minimum distance between the
collision spheres of the robots.

• Computation Time: The time to compute an action via
the local motion planner at each time step.

Note, the above performance metrics, excluding the success
rate and computation time, are only evaluated if the con-
cerned motion planner succeeds. We execute our planner on
a standard laptop (i7-12700H) without parallelization. All
parameters are summarized in Table I. Joint velocities are
provided as inputs to the robots by integrating q̈i, ∀i ∈ [N ].

B. Simulation Experiments

Table II displays the performance across 50 scenarios with
randomized cube positions for MRDF, RF, and RF-CV. The

TABLE I: Parameters

Max time Tmax 70 s Time step ∆t 0.01 s
# of collision spheres Li 32 Pred. steps K 10
Min vel deadlock vd,min 0.03 rad/s Radius robst 8 cm
Min time deadlock td,min 3.0 s Weight γhigh 3
Min distance deadlock dee,c 0.35m Weight γlow 2

https://github.com/maxspahn/gym_envs_urdf


(a) Initial pose (b) Deadlock detected (c) Deadlock resolving (d) Deadlock resolved (e) Block delivered

Fig. 2: Selected time frames of RF resolving deadlocks

TABLE II: Statistics for 50 scenarios of our proposed methods RF and RF-CV compared to 50 scenarios of MRDF.

Success-Rate Time-to-Success [s] Collision-rate Min Clearance [m] Computation Time [ms]
MRDF 0.73 ± 0.40 36.4 ± 15.8 0.31 0.004 ± 0.004 4 ± 0.9

RF 0.97 ± 0.11 25.0 ± 4.0 0.04 0.022 ± 0.013 20.5 ± 0.8
RF-CV 0.98 ± 0.09 24.7 ± 2.8 0.04 0.024 ± 0.015 29 ± 1.0

Fig. 3: Scaling of computation times with horizon length K.

benefits of RF combined with a heuristic approach to resolve
deadlocks are clearly illustrated by a success rates of 97%
compared to 73% for MRDF. The minimum clearance and
collision-rate are also improved for RF compared to MRDF,
since the deadlocks in MRDF cause close-to-collision config-
urations. Due to the rollouts being efficiently implemented
using a symbolic Casadi function [30] defined beforehand
and called during operation, the computation time of 20.5 ms
is realistic for real-time local motion planning. Although a
longer prediction horizon results in earlier detection of a
deadlock, it comes with the drawback of increased compu-
tation times, see Fig. 3.

While RF assume that the goal configurations of the
other robots are known, RF-CV removes this assumption by
estimating the goal of the other robots. Figure 4 illustrates
the joint angles of two robots that have reached a deadlock
according to Eq. (10). For this specific scenario, the robots
detect the deadlock with a time difference of 0.2 s when
using goal estimation and deviate from RF with known
goals. The success-rate, minimum clearance, collision-rate,
and time-to-success for RF-CV are similar to RF, as can be
seen in Table II. Applying RF-CV improved collision avoid-
ance when compared to MRDF without requiring additional
communication. Therefore, the goal estimation is beneficial
in set-ups where communication is challenging or unreliable.

Fig. 4: Robot joint angles and identified deadlock instances. Panda
1 and Panda 2 apply Rollout Fabrics with an estimated goal for the
other robot, respectively. Furthermore, the deadlock identified with
full knowledge of the other robot’s goal is displayed.

VI. CONCLUSIONS

In this work, we showcased the applicability of dynamic
fabrics to multi-robot scenarios. Additionally, dynamic fab-
rics are extended to Rollout Fabrics (RF), where dynamic
fabrics are propagated forward in time. These future pre-
dictions are used to detect and resolve deadlock scenarios.
Simulation experiments are performed with multiple manip-
ulators where each robot performs a pick-and-place task in
close proximity to the other robots. Analyzing the scenarios
with two manipulators, the success rate of the proposed
RF in combination with the proposed deadlock resolution
is increased compared to multi-robot dynamic fabrics. Addi-
tionally, we analyze RF with goal estimation which removes
the requirement for communicating updated goals. For future
research, we want to explore the applicability of RF to
human-centered environments and analyze how the strategy
of rollouts can be used for manipulation tasks involving
physical interaction. Our approach would thereby benefit
from advances in environment and robot representation.
Furthermore, we intend to show the applicability of RF in
real-world experiments.
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