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Abstract— Motion planning for autonomous robots in
tight, interaction-rich, and mixed human-robot environments
is challenging. State-of-the-art methods typically separate
prediction and planning, predicting other agents’ trajectories
first and then planning the ego agent’s motion in the remaining
free space. However, agents’ lack of awareness of their influence
on others can lead to the freezing robot problem. We build
upon Interaction-Aware Model Predictive Path Integral (IA-
MPPI) control and combine it with learning-based trajectory
predictions, thereby relaxing its reliance on communicated
short-term goals for other agents. We apply this framework
to Autonomous Surface Vessels (ASVs) navigating urban
canals. By generating an artificial dataset in real sections of
Amsterdam’s canals, adapting and training a prediction model
for our domain, and proposing heuristics to extract local goals,
we enable effective cooperation in planning. Our approach
improves autonomous robot navigation in complex, crowded
environments, with potential implications for multi-agent
systems and human-robot interaction.

Dataset, Prediction Model, Video and Code available at:
autonomousrobots.nl/pubpage/IA_MPPI_LBM.html

I. INTRODUCTION

Cities characterized by dense networks of urban canals,
such as Amsterdam, could greatly benefit from deploying
Autonomous Surface Vessels (ASVs) for various tasks in-
cluding deliveries, transportation of people, and garbage
collection [1]. However, navigating autonomously in urban
canals amidst mixed human-robot crowds presents a signifi-
cant challenge. Urban canals are typically narrow, frequently
congested, and lack the structured nature of roads. While
not as strictly enforced as on roads, navigation principles
like right-of-way and right-hand conventions should still be
considered. Thus, akin to autonomous ground robots among
pedestrian crowds, successful navigation in urban canals
relies on cooperation and awareness of interactions [2].

Recently, a sampling-based Model Predictive Control
(MPC) called Interaction-Aware Model Predictive Path In-
tegral (IA-MPPI) control has been developed for generating
cooperative motion plans in urban canals among multiple
non-communicating vessels while maintaining awareness of
navigation rules [3]. This algorithm assumes rational and
homogeneous agents, exact sensing of states, and knowl-
edge of local goals. In real-time, the algorithm samples
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Fig. 1: Overview of the proposed framework. Firstly, the prediction model
utilizes information from all elements in the scene to forecast trajectories
for obstacle agents. Meanwhile, the global planner, equipped with the map,
start, and goal positions, generates a path for the ego agent. Subsequently,
the local goal extractor leverages this information to determine appropriate
local goals for the motion planner. With inputs derived from the scene and
the local goals, the Interaction-Aware Model Predictive Path Integral (IA-
MPPI) algorithm simultaneously plans and predicts input sequences for all
agents in the scene. The first input of the sequence is then assigned to the
ego agent, and the algorithm iterates.

thousands of input sequences to approximate the optimal
input sequence that enables all agents to progress toward
their goals cooperatively. In scenarios where the local goals
of other vessels are unavailable, such as in mixed human-
robot environments or due to lack of communication, this
previous approach has approximated these goals using a
constant velocity model over a given horizon. However, in
narrow and crowded environments, vessels often need to
execute complex maneuvers to navigate tight intersections
and avoid collisions while adhering to navigation rules.
In such situations, relying solely on a constant velocity
approximation can lead to inaccurate predictions, which can
adversely affect the performance of the motion planner in
terms of deadlocks, collisions, navigation rule violations,
traveled distance, and travel time.

In this paper, we present a framework (see Fig. 1) that
utilizes a learning-based trajectory prediction method to
improve the estimation of agents’ intended destinations. We
introduce heuristics to extract local goals from the predicted
trajectories and provide the motion planner with the flexibil-
ity to influence the behavior of other agents while expecting
cooperation in collision avoidance.

A. Related Work

Robot motion planning in dynamic environments is a
challenging problem for which a series of classical and
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heuristic-based approaches have been developed [4], such as
the Dynamic Window Approach [5] or Reciprocal Velocity
Obstacles [6], [7]. Despite their successful applications, e.g.
to non-holonomic robots [8] or vessels in open waters [9], the
motions planned by this class of methods are often reactive.
This, especially in crowded environments, can lead to unsafe
and unpredictable behaviors.

Model Predictive Control (MPC) has become a popular
approach to trajectory planning for autonomous vehicles [10]
because of its ability to optimize accounting for the sys-
tem’s dynamics and constraints. Moreover, by planning over
a sufficiently large horizon, MPC can anticipate dynamic
obstacles resulting in trajectories that are less reactive. To
anticipate other agents, however, the free space over the
entire planning horizon needs to be computed [11], which
requires knowledge about other agents’ positions in the
future. If all the agents in the environment are autonomous,
communication and distributed optimization can be used to
plan trajectories in multi-agent environments [12]. In mixed
human-robot environments, however, such communication is
not possible and predictions of the future motion of the other
agents have to be employed. For instance, recent work on
MPC for rule-aware navigation in urban canals uses constant
velocity to model the future behavior of other vessels [13].

In interaction-rich scenarios, however, constant velocity
can be an inaccurate approximation which may lead to
unsafe motion plans [14]. Therefore, several works rely
on learning-based models to predict the future motion of
other agents [15] and can include prediction confidence [16]
and multimodality [17]. These methods, however, decouple
prediction and planning which, in high-interaction environ-
ments, may lead the ego agent to wrongly assume that no
collision-free path exists [18]. To avoid the so-called freezing
robot problem the robot has to expect cooperation in collision
avoidance from the other agents [19]. Coupled prediction and
planning can be done with MPC by modeling the interacting
agents as a system, but it quickly becomes expensive to solve
via constrained optimization leading to long computation
times and short planning horizons [20], [21].

Building upon a novel sampling-based Model Predictive
Control (MPC) framework [22], Interaction-Aware Model
Predictive Path Integral (IA-MPPI) control [3] has success-
fully demonstrated decentralized coupled predictions and
planning in real-time, accommodating long prediction hori-
zons, nonlinear dynamics, and discontinuous cost functions
in multi-agent environments. While IA-MPPI has exhibited
superior performance compared to optimization-based MPC
approaches that rely on fixed predictions of other agents’
motion, it necessitates knowledge of their near-term local
goals, which can either be communicated or estimated.

B. Contribution

This paper presents a novel framework for interaction-
aware decentralized motion planning in urban canals without
relying on communication. Our framework encompasses the
following contributions:

• Realistic Dataset: We generate and publish a realistic
dataset of simulated rule-abiding vessel trajectories in
real sections of Amsterdam’s urban canals.

• Learning-Based Trajectory Prediction: We adapt a
pedestrian prediction model [23] to vessels and train
it specifically for urban canals. This approach enables
us to generate trajectory predictions for other agents.

• Local Goal Extraction: We propose heuristics to extract
local goals from the predicted trajectories, thereby pro-
viding the motion planner with information about where
agents intend to go.

• Communication-Free Coupled Prediction and Planning:
By combining the local goal extraction with the IA-
MPPI control [3], we achieve coupled prediction and
planning without the need for communication. This
approach ensures that the ego agent can influence the
behavior of other agents while anticipating cooperation
in collision avoidance.

We validate our planning framework through extensive
simulated experiments, comparing it against baseline ap-
proaches and providing insights into the benefits of coupled
prediction and planning over decoupled methods. The frame-
work can be adapted to other robot types beyond vessels.

II. INTERACTION-AWARE MPPI

In this section, we introduce the main ideas of IA-
MPPI [3], upon which our proposed framework is built.
For details on the method, models used and cost function
please refer to the original paper. For insights on the un-
derlying sampling-based MPC, one can refer to the work on
Information-Theoretic MPC [22]. In short, IA-MPPI assumes
that all the agents are homogenous and rational, i.e. have the
same model and cost function. Under this assumption, we can
create a large multi-agent system and plan input sequences
resulting in cooperative trajectories for the ego agent as well
as all the obstacle agents. This being a decentralized planning
framework, we then apply the first input of the sequence to
our ego agent, observe the environment and plan again. In
more detail, IA-MPPI models the ego-agent i as a discrete-
time dynamical system,

qi,t+1 = F(qi,t,ui,t) (1)

where qi,t and ui,t are, respectively, the state and the input
of the ego-agent at timestep t. The state qi,t = [pi,t,vi,t]
contains the position and velocity of the agent. IA-MPPI
assumes that all agents in the environment are homogenous.
The state and the input of the multi-agent system consisting
of the ego-agent and the obstacle agents can therefore be
stacked, resulting in,

q =
[
q⊤
i q⊤

j

]⊤
,

u =
[
u⊤
i u⊤

j

]⊤
,

∀j ∈ M \ i, (2)

where (.)j is a variable that the ego-agent i estimates of
agent j and M = {0, 1, ...,m} is the set of all agents in
the scene. By also stacking the state transition functions F
over all agents, we obtain a model for the multi-agent system



qt+1 = G(qt,ut). Given a planning horizon T and a prior
input sequence U = [u0,u1, . . . ,uT−1], IA-MPPI samples
K input sequences for the entire multi-agent system,

Ũk = [ũ0,k, ũ1,k, . . . , ũT−1,k], ũt,k = N (ut, νΣ) (3)

with k = 1, . . . ,K, variance Σ and scaling parameter ν. At
the first iteration, the prior input sequence U is initialized at
zero. By the end of this section, it will become clear how
this prior input sequence is updated in subsequent iterations.
Having a model for the multi-agent system, we can forward
simulate the K input sequences into K state trajectories Qk

for the multi-agent system,

Qk =
[
q0, G(q0, ũk,0), . . . , G(qk,T−1, ũk,T−1)

]
. (4)

Each of the resulting state trajectories is evaluated with
respect to both an agent-centric cost as well as a system-
wide cost, resulting in a total sample cost Sk. The reader
can refer to the original publication for details on the cost
function [3]. For the scope of our paper, it is important to
know that the agent-centric cost includes a tracking cost to
encourage progress towards a local goal pg computed as,

Ctracking = ktracking
||pg − pt||2
||pg − pt0 ||2

, (5)

where pt is the position of the agent at timestep t, pt0 is
the position of the agent at the beginning of the planning
horizon and ktracking is a tuning parameter. Notice that
we need to know the position of the local goal of each
agent. For the ego agent, the local goal is extracted from
a global plan. For all the other agents, the local goal has
to be either communicated or estimated. We propose in the
following section how this goal can be estimated. Once Sk,
∀k ∈ [1, . . . ,K] has been computed, importance sampling
weights wk can be calculated as,

wk =
1

η
exp

(
−1

λ
(Sk − Smin)

)
,

K−1∑
k=0

wk = 1, (6)

where Smin is the minimum sampled cost, η a normalization
factor and λ a tuning parameter. We then compute an
approximation of the optimal control sequence through a
weighted average of the sampled control sequences,

U∗ =

K−1∑
k=0

wkŨk (7)

and apply the first input u∗
i,0 to the ego-agent. We can now

use a time-shifted version of U∗ as the prior input sequence
U to warm-start the sampling strategy at the next iteration.

III. PREDICTING GOAL POSITIONS

In Fig. 1 we provide an overview of the proposed frame-
work. In Section III-A, we outline the prediction model. In
Section III-B, we describe the dataset we have collected to
train a prediction model that is interaction and rule-aware. In
Section III-C, we present the steps taken to port the predic-
tion model to urban vessel environments. In Section III-D,
we propose a heuristic to extract a local goal suitable for
IA-MPPI using the predicted trajectories.

A. Interaction-aware trajectory prediction method

Our approach leverages interaction-aware trajectory pre-
diction for goal estimation. We employ an adapted version
of Social-VRNN [23], which was originally designed for
pedestrians, to obtain trajectory predictions. However, we
remark that our framework is agnostic to the choice of
trajectory predictor as long as it accounts for obstacles and
interactions between agents in the environment.

Social-VRNN [23] is an interaction-aware trajectory pre-
diction method that leverages a generative model based on
Variational Recurrent Neural Networks (VRNNs) [24]. The
model combines three types of contextual cues to define a
joint representation of an agent’s current state: information
on the past trajectory of the agent of interest, environment
context, and agent-agent interactions. The input to predict
the trajectory of agent i is denoted as:

x = {vi−T0:0,Oi
env,O−i

int}, (8)

where vi−T0:0
corresponds to the sequence of velocity states

over the previous observed horizon TO of the agent of
interest i. The environment information Oi

env is represented
in the form of a grid map extracted around the agent of
interest. Then, O−i

int represents the information on agent-
agent interactions. It is a vector with the relative positions
and velocities of all other agents from agent i’s perspective,
listed in ascending order based on the absolute distance to it.
The output of the model is a sequence of velocity probability
distributions represented by TH diagonal gaussian distribu-
tions N (µv,k, diag(σ2

v,k)). For details on the method and its
architecture, please refer to the original paper [23].

B. Artificial Dataset

In the absence of a publicly available dataset for short-
term vessel trajectory prediction, an artificial dataset of
vessel interactions is collected in a simulation environment.
In order to obtain trajectories that resemble those of real
vessels in urban canals, four real canal section maps in
Amsterdam: the Herengracht (HG), the Prinsengracht (PG)
and the Bloemgracht (BG) are used to collect data. The
Open Crossing (OC) environment is created to collect vessel
interactions in open water. Data on an additional environ-
ment, the Amstel (AM), is included only for testing our
framework’s generalization to environments not seen during
training. Figure 2 depicts two of these canal sections. The
yellow rectangles correspond to the areas in which start
and goal locations are randomly initialized. These areas are
placed around the entire map and in each canal section to
improve the diversity of the trajectories and interactions.

To collect the data, more than four thousand experiments
are conducted by initializing up to four vessels simultane-
ously in the mentioned environments. Each vessel is assigned
a randomized start and goal location in one of the predefined
areas. All sampled locations are ensured to be collision-free.
The vessels run a centralized IA-MPPI to sail toward their
respective goals while accounting for navigation rules. This
ensures that the recorded trajectories are safe, interaction-
aware, and mostly rule-abiding.



TABLE I: Specifications of the artificial dataset. Exp. refers to the number
of experiments done in each scenario. Frames and Vessels refer to the total
number of frames and vessels present in the data set, respectively. All data
is recorded at a rate of 10Hz.

Scenario Exp. Frames Vessels

Herengracht 1000 406229 2499
Prinsengracht 1247 420285 4122
Bloemgracht 1188 372173 3564

Open Crossing 1182 417515 3544
Amstel 79 23468 316

Total 4696 1639670 14045

For each experiment and vessel in the environment we
record the current timestamp, the vessel ID, its position
and velocity in the global frame. Each timestamp is unique
across timesteps and experiments, which enables to identify
vessels belonging to the same scene. The specifications of
the artificial vessel dataset can be found in Table I. In order
to evaluate the prediction model, 10% of the dataset is used
as the test set. The remaining data is used for training and
is split into a training set (72%) and a validation set (18%).
The distribution of data from each scenario is ensured to be
equal in all splits.

Fig. 2: Canal sections of the Bloemgracht and Prinsengracht. The black
areas are the canals. The yellow rectangles correspond to the initialization
areas in which goals and starting locations were randomly initialized for
each agent during the simulations.

C. Model Training and Adaptation

We adapt the variational inference architecture presented
in [23] to generate unimodal trajectory probability predic-
tions of vessels. In contrast to humans, vessels are slower
and have lower-order dynamics, which results in less reac-
tive behaviors and smoother trajectories. To take this into
account and avoid overfitting to the dataset, we reduce the
dimensionality of the method’s latent space. We also add an
L2-regularization term to the loss function and weight it with
a hyperparameter we define as γ.

1) Hyperparameters: The model is trained using back-
propagation through time and the RMSProp [25] optimizer.
With a time step of ∆T = 0.4 seconds, the prediction hori-
zon is set to TH = 24 steps (9.6 seconds) and the previous
horizon to TO = 14 steps (5.6 seconds). Furthermore, we
employ learning rate starting at α = 1e−4 that decays by
a factor of 0.9 after every gradient step. The regularization
weight is kept at γ = 0.0001. Finally, the model is trained
for 4e4 training steps, using early stopping.

D. Local Goal Extraction

In eq. (5) we show that the IA-MPPI needs to know the
local goal pg of each agent. There are two requirements
for a goal to be suitable: it has to lie within a radius rpg

from the agent it corresponds to and cannot be in space
occupied by static obstacles. Therefore, we first search the
predicted trajectory backward until we obtain a position
p≤rpg

within the desired radius. If p≤rpg
is in collision with

a static obstacle, we construct a circle centered on the agent’s
position pa with radius pa− p≤rpg

and find the point on the
circle closest to p≤rpg

which is not in collision with static
obstacles. This goal extraction method is illustrated in Fig. 3.
Once the goals for all agents are predicted, IA-MPPI can plan
interaction-aware trajectories in a decentralized fashion.

Fig. 3: A visual illustration of how the local goal is extracted from a colliding
trajectory prediction.

IV. EXPERIMENTS

The experiments are conducted in real maps of Amster-
dam’s canals, namely the Herengracht (HG), Bloemgracht
(BG), Prinsengracht (PG), and the Amstel (AM). In addition,
experiments are conducted in an Open Crossing (OC) map
without static obstacles. In Section IV-A we evaluate the
prediction model, in Section IV-B we show the performances
of the proposed framework for motion planning, and in
Section IV-C we highlight the benefits of coupled prediction
and planning with respect to a decoupled approach.

A. Prediction Accuracy

In Fig. 4 we compare the proposed Learning-Based Model
(LBM) to a Constant Velocity Model (CVM) on test data. We
evaluate the methods against the displacement error at each
prediction step, which is defined as the Euclidean distance
between a prediction and the ground truth. In all maps
the LBM outperforms the CVM, showing a lower average
displacement error and a smaller standard deviation. Note
that the Amstel map was previously unseen during training,
demonstrating generalization capabilities.

B. Interaction-Aware Motion Planning with Predictions

In this study, we evaluate the performance of the pro-
posed decentralized framework that uses a Learning-Based
prediction Model to extract local goals (IA-MPPI-LBM), by
comparing it against a decentralized approach that extracts



Fig. 4: The displacement error of the predictions from CVM and the LBM over the prediction horizon for each canal section. The solid line represents
the mean error and the shaded area represents 30% of the standard deviation.

Fig. 5: Examples of experiments in the low-interaction scenario (left) and
high-interaction scenario (right).

local goals from a Constant Velocity Model (IA-MPPI-CVM)
and decentralized with communication (IA-MPPI-w/comm.),
which assumes perfect knowledge of other agents’ local
goals. It is important to stress that, in similar experiments,
the IA-MPPI-CVM which serves as the communication-free
baseline in our comparisons has already been demonstrated
to outperform an optimization-based Model Predictive Con-
trol (MPC) approach that relies on fixed predictions [3].

In the simulated experiments taking place in real sec-
tions of the canals of Amsterdam, we randomize the initial
positions and goals of four interacting agents, all running
the same algorithm. To challenge each method, we design
regions within which each agent’s start and goal position
are randomly initialized in a way that forces all four agents
to interact in a narrow section of the map. These high-
interaction scenarios are discussed in Section IV-B.1.

For completeness, we also design experiments where
agents’ starting and goal positions are randomized across
much larger spaces. In these experiments, however, vessels
don’t often interact and usually have larger free spaces
to avoid each other. These low-interaction scenarios are
discussed in Section IV-B.2.

An example of experiments in low- and high-interaction
scenarios is shown in Fig. 5. The IA-MPPI plans with a time
horizon T of 100 time steps with step size δT = 0.1s and
K = 4500 samples. Each method is evaluated on the same
set of randomly initialized experiments. For fairness, metrics
such as rule violations, goal displacement error, total traveled
distance, and time are only displayed for experiments that
ended successfully with all methods.

1) High-Interaction Scenario: The experiments in high-
interaction scenarios are conducted in narrow intersections
in the Bloemgracht, Herengracht, and Prinsengracht. Since
the Amstel canal is very wide and the Open Crossing has no
static map constraints, it is difficult to generate experiments

TABLE II: Successes (Succ.), Deadlocks (Deadl.), Collisions (Coll.), Rule
Violations (Rule Viol.) and Goal Displacement Error (Goal DE) for all
methods in high-interaction scenarios per canal sections.

Method Succ. / Deadl. Rule Viol. Goal DE/ Coll.

H
G

IA-MPPI-CVM 18 / 0 / 2 16 5.82 m
IA-MPPI-LBM (ours) 19 / 1 / 0 16 5.26 m

IA-MPPI-w/comm. 20 / 0 / 0 16

PG

IA-MPPI-CVM 19 / 0 / 1 11 7.30 m
IA-MPPI-LBM (ours) 19 / 1 / 0 5 4.11 m

IA-MPPI-w/comm. 20 / 0 / 0 5

B
G

IA-MPPI-CVM 17 / 0 / 3 7 4.98 m
IA-MPPI-LBM (ours) 20 / 0 / 0 4 4.13 m

IA-MPPI-w/comm. 20 / 0 / 0 3

with high-interactions, and thus these two maps are excluded
from this experiment section. The results of the experiments
are summarized in Table II and Figure 6. It can be seen
that in these high-interaction scenarios, the LBM consistently
outperforms the CVM in terms of the goal displacement
error (Goal DE). As a consequence, the motion planning
framework that estimates other agents’ local goals using
predictions from the LBM outperforms the framework that
uses the CVM on all the metrics. Moreover, we demonstrate
our framework with the LBM has negligible performance
losses compared to the method with perfect communication.

Fig. 6: This figure displays the distribution of the total traveled distance
and total traveled time of the vessels during the experiments in the high-
interaction scenarios. The results are displayed per map and for each method.

2) Low-Interaction Scenarios: Table III and Fig. 7 sum-
marize the results in low-interaction scenarios. Note that we
here also test on the Open Crossing maps and the Amstel,



which the LBM has not previously seen in training. The
results show that also when the start and goal positions of all
agents are randomly initialized over large areas, our proposed
communication-free framework with the LBM performs just
as well as the baseline with full communication, even in a
map unseen in training. However, perhaps unsurprisingly, the
framework that approximates the local goals with a CVM can
also achieve the same performance as the framework with
full communication. Intuitively, in low-interaction scenarios
where agents mostly navigate straight to their goal, CVM is
a reasonably good approximator.

Fig. 7: This figure displays the distribution of the total traveled distance and
total traveled time by vessels during the experiments in the low-interaction
scenarios. The results are displayed per map and for each method.

C. Decoupled Prediction and Planning

The framework we proposed utilizes a Learning-Based
Model (LBM) to predict trajectories for obstacle agents and
extract local goals while employing Interaction-Aware Model
Predictive Path Integral (IA-MPPI) for coupled predictions
and planning. To assess the advantages of this framework, we
compare it to a planner without interaction awareness (MPPI-
LBM), which decouples prediction and planning. Like other
state-of-the-art methods, MPPI-LBM treats the predicted
future trajectories of obstacle agents as occupied space and
plans the ego agent’s motion without considering interaction
awareness. This approach reduces the system size and com-
putational burden by minimizing the space to be sampled.
However, apart from this difference, MPPI-LBM shares the
same sampling strategy and cost function as the proposed IA-
MPPI-LBM. We conducted 100 low-interaction experiments
across the Amstel, Bloemgracht, Herengracht, Open Cross-
ing, and Prinsengracht, comparing different methods. Table
IV presents the outcomes, including total successes, dead-
locks, collisions, and rule violations. Again, the proposed
IA-MPPI-LBM shows similar performances to the method
with communication (IA-MPPI-w/comm).

However, MPPI-LBM exhibited a significantly lower suc-
cess rate and a higher number of rule violations. The LBM,
while trained to be somewhat rule- and interaction-aware
in its predictions, occasionally struggles to capture complex

TABLE III: Successes (Succ.), Deadlocks (Deadl.), Collisions (Coll.), Rule
Violations (Rule Viol.), and Goal Displacement Error (Goal DE) for all
methods in the various canal sections.

Method Succ. / Deadl. Rule Viol. Goal DE/ Coll.

H
G

IA-MPPI-CVM 38 / 0 / 2 22 5.31 m
IA-MPPI-LBM (ours) 37 / 0 / 3 26 5.42 m

IA-MPPI-w/comm. 37 / 2 / 1 26

PG

IA-MPPI-CVM 38 / 0 / 2 14 3.12 m
IA-MPPI-LBM (ours) 38 / 0 / 2 13 2.94 m

IA-MPPI-w/comm. 38 / 0 / 2 14

B
G

IA-MPPI-CVM 38 / 0 / 2 17 5.36 m
IA-MPPI-LBM (ours) 39 / 0 / 1 20 4.93 m

IA-MPPI-w/comm. 40 / 0 / 0 20

O
C

IA-MPPI-CVM 40 / 0 / 0 27 3.98 m
IA-MPPI-LBM (ours) 40 / 0 / 0 29 4.04 m

IA-MPPI-w/comm. 40 / 0 / 0 27

A
M

IA-MPPI-CVM 40 / 0 / 0 22 3.12 m
IA-MPPI-LBM (ours) 39 / 1 / 0 18 3.49 m

IA-MPPI-w/comm. 40 / 0 / 0 21

reciprocal collision avoidance maneuvers when agents are in
close proximity. This, combined with the motion planner’s
unawareness of the ego agent’s influence on other agents’
motion and their cooperation in collision avoidance, often led
the MPPI-LBM to wrongly assume that no feasible solution
existed. Consequently, this resulted in agents drifting into
collisions due to their large inertia.

TABLE IV: Successes (Succ.), Deadlocks (Deadl.), Collisions (Coll.), and
Rule Violations (Rule Viol.) for the non-interactive MPPI and the IA-MPPI
baseline in low-interaction scenarios.

Method Succ. / Deadl. / Coll. Rule Viol.

MPPI-LBM. 72 / 1 / 27 40
IA-MPPI-LBM (ours) 97 / 1 / 2 30
IA-MPPI-w/comm. 98 / 0 / 2 28

V. CONCLUSIONS

In this paper, we introduced a framework that combines a
learning-based trajectory prediction model with Interaction
Aware MPPI, enabling decentralized and communication-
free coupled prediction and planning. Our experimental
results demonstrated the superiority of our Learning-Based
Model (LBM) over the Constant Velocity Model (CVM) in
accurately predicting the trajectories of interacting vessels,
even in unseen maps. Through simulated experiments in
Amsterdam’s canals, we showed that our motion planning
framework achieved comparable performance to a method
with ground truth knowledge of local goals, which was
shown to outperform classical optimization-based MPC ap-
proaches with decoupled prediction and planning in previous
work [3]. Additionally, we highlighted the limitations of the
CVM in tight environments with multiple interacting agents.
Finally, by comparing our approach with a non-interactive
planner, we emphasized the advantages of coupled planning
and predictions.
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