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Abstract— We study the problem of selecting a fleet of robots
to service spatially distributed tasks with diverse requirements
within time-windows. The problem of allocating tasks to a fleet
of potentially heterogeneous robots and finding an optimal se-
quence for each robot is known as multi-robot task assignment
(MRTA). Most state-of-the-art methods focus on the problem
when the fleet of robots is fixed. In contrast, we consider that
we are given a set of available robot types and requested
tasks, and need to assemble a fleet that optimally services the
tasks while the cost of the fleet remains under a budget limit.
We characterize the complexity of the problem and provide
a Mixed-Integer Linear Program (MILP) formulation. Due to
poor scalability of the MILP, we propose a heuristic solution
based on a Large Neighbourhood Search (LNS). In simulations,
we demonstrate that the proposed method requires substantially
lower budgets than a greedy algorithm to service all tasks.

I. INTRODUCTION

Task allocation and sequencing is a fundamental problem
in multi-robot systems, with applications in environmen-
tal monitoring [1]–[3], service in homes and health-care
facilities [4], [5], pickup-and-delivery [6] and autonomous
mobility-on-demand [7], [8]. However, many real world
problems pose a diverse set of requirements for robot ca-
pabilities, leading to specialized robot designs [9], [10].
Deploying a heterogenous fleet of robots offers the most
efficient use of resources, yet poses new challenges due to
the increased combinatorial complexity.

In this paper, we consider the problem of designing a het-
erogenous fleet of robots for complex multi-robot missions.
Given is a set of available robots with several characteristics
such as the capability to service different types of tasks,
how they can traverse the environment, their battery life
and a deployment cost. The goal is to select robots that
can perform their joint mission as well as possible while
the total deployment cost remains under a certain budget.
For instance, in material transport applications the most
efficient solutions might require a combination of high-
capacity robots to service densely located tasks as well as
cheaper low-capacity robots reaching remote task locations.
Similarly, in environmental monitoring data collection might
performed by ground vehicles or drones, which differ in their
capabilities of traversing the environment, and potentially in
the types of measurements they can take.

We illustrate an example in Figure 1. Here a fleet of robots
is required to service a set of tasks, each task requires a
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(a) Fleet 1. (b) Fleet 2.

Fig. 1: Example for a deployment of heterogenous fleets with
different capabilities (red and blue) for different task requirements.
Fleet 1 consists of three low cost robots that can each only service
one task type. Fleet 2 introduces a more versatile robot (purple)
that can service both task types.

robot to visit some location in the environment. There are
two different types of requirements for the robot to service
a task (blue and red). In Figure 1a, a fleet of three low-
budget robots is deployed, each robot can only service one
task type. Due to battery life limits or tight task deadlines,
the fleet is not able to complete all tasks. Figure 1b shows a
different fleet where one red and one blue robot are replaced
by a single yet more flexible purple robot that can service
both task types. This allows for a different allocation of tasks
between robots such that all tasks can be serviced.

Designing a heterogeneous fleet for a mission requires
algorithms which efficiently find combinations of different
robot types that are well adapted to the tasks. In particular,
we study the following problem: Given a set of available
robot types, assemble a fleet that is able to service the largest
number of tasks while the cost of the fleet stays within a
budget. First, we characterize the computational complexity
of the problem, and present a mixed-linear integer program
(MILP) formulation. Due to poor scalability of exact solu-
tions, we propose a heuristic based on a large neighbourhood
search (LNS). LNS algorithms iteratively improve solutions
to combinatorial problems by removing elements of the solu-
tion and subsequently reinserting these elements. Our method
takes an integrated approach of simultaneously optimizing i)
which robots to include in the fleet and ii) the missions,
i.e., tours, executed by each robot. Therefore, we propose
two removal heuristics that allow for alternating between
improving the current tours and switching out robots in the
fleet. In a series of simulation experiments, we show that
this approach can find substantially better solutions than a
greedy approach for various problem setups.

a) Related Work: Planning and coordination of hetero-
geneous robot fleets has found wide interest in the multi-
robot systems community in recent years [6], [11]–[18]. Yet,
few works focus on the problem of deciding which robots to



include in a heterogeneous fleet. The authors of [9] consider
the problem of designing individual underwater robots, and
then assembling an optimal fleet. Given the available robots,
the fleet design problem is cast into a knapsack variant
and solved with a breadth first search. A key difference to
our work is that the method is focused on specific mission
types and thus imposes different constraints: While we seek
to find the best possible fleet given a budget constraint,
their work seeks to find a fleet that covers a search area
most efficiently. The work of [19] studies the design of
homogeneous and heterogeneous robot fleets for logistic
warehouses. Both problems are formulated as an Integer
Linear Program (ILP). In addition to its focus on pickup-
and-delivery, the paper assumes that any type of robot is
able to fulfil any task, i.e., transportation request. Our work
does not impose this assumption, such that not every fleet
is able to service all tasks. Further, we consider additional
constraints such as task deadlines and limited battery life.
Related to heterogeneous fleet design, researchers investigate
the problem of determining the optimal swarm or fleet sizes
for homogeneous multi-robot systems [20]–[23]. This either
poses a multi-objective optimization problem, trading-off the
primary mission objective with the operational cost for the
fleet, or a problem of finding the smallest possible fleet such
that certain objectives are met. Similarly, we are interested in
finding a fleet that maximises the number of serviced tasks
given a budget limit for assembling the fleet, yet we consider
that multiple robots types are available.

Lastly, our solution is based on a large neighbourhood
search (LNS). Such methods have been frequently used
to solve multi-robot routing problems such as generalized
traveling salesman [24] or MRTA with homogeneous and
heterogeneous fleets [17], [25], [26].

b) Contributions: Our main contributions are as fol-
lows. First, we characterize hardness of the fleet design
problem and provide an MILP formulation of the problem.
Second, we present a large neighbourhood search (LNS)
algorithm based on two removal heuristics to simultaneously
optimize which robots to be employed in the fleet, and what
tour each robot takes. In simulation, we show the advantage
of the proposed LNS approach over a greedy algorithm in
several problem variations.

II. PROBLEM STATEMENT

We consider an offline multi-robot task assignment prob-
lem: Given an environment encoded as a graph G = (V,E),
a fleet of robots needs to service a fixed set of N tasks
T = {T1, . . . , TN} where each task requires one of the
robots to travel to a vertex v ∈ V , before some deadline
td. Further, each task has a set of Φ requirements. We write
a task as a tuple T = (v, td,Φ).

To service tasks T , we can assemble a fleet of robots
by choosing from a set of available robot types R =
{R1, . . . , Rl}. Each robot type R ∈ R is a tuple (Ψ, b, β,D).
Here Ψ is a set of capabilities to fulfill task requirements; a
robot of type Ri can service task Tj when Ψi ⊇ Φj . Further,
b(R) is a fixed deployment cost and β(R) the maximum

battery life. The matrix D ∈ R|V |×|V |
≥0 describes the traversal

time of each edge of the graph for a robot of type R.
This does not only encode different speeds for a robot in
different parts of the environment, but can also capture the
traversability of edges. For instance, when some edges are
only usable by drones, a ground robot would have infinite
traversal time for these. A fleet is a collection of robots
F = {r1, r2, . . . } where each robot r is of some type R.
A fleet can use multiple robots of the same type, making F
a multi-set. To service tasks, each robot executes a tour τ ,
visiting a sequence of task vertices. We do not consider inter-
robot collision. Given a fleet F , an MRTA solver π finds a
set of tours Qπ(F ) = {τ1, τ2, . . . } for all robots r1, r2, . . .
in F that optimizes some measure for the quality of service
for tasks in T . In this paper, we consider the objective to be
the number of tasks serviced before their deadline, denoted
by the functional ρ(Qπ(F ), T ). Finally, the length of each
tour l(τi) must remain below the robot’s battery limit β(ri).
The fleet design problem is then formulated as follows:

Problem 1 (Budgeted fleet design). Given an environment
described by G = (V,E), a set of tasks T , an infinite supply
of different robot types R and a budget B, find a fleet of
robots F ∗ and an MRTA solver π, that solve

max
F

ρ(Qπ(F ), T )

s.t.
∑
ri∈F

b(ri) ≤ B

l(τi) ≤ β(ri), for all i = 1, . . . , |F |
ri ∈ R for all ri ∈ F.

(1)

In essence, the problem at hand seeks to find the best fleet
given the available robot types to service a set of tasks, while
the budget for robots is limited.

III. METHOD

First, we formulate the problem as an optimization of a
set function in order to relate it to well-known combinatorial
optimization problems, establishing hardness results, and to
present a mixed integer linear program. We then briefly study
the greedy algorithm before presenting our proposed method
based on a Large Neighbourhood Search (LNS).

A. Approach

We approach Problem 1 by formulating it as a subset
selection problem. Given the robot types, let F be a multi-set
containing ⌈B/bi⌉ robots of each type Ri. By construction,
any feasible solution to (1) is a subset of F . This allows
us to treat the problem as a heterogeneous variant of the
team orienteering problem (TOP) [27], [28] with robots F
where only some robots execute a tour of non-zero length,
i.e. activated. Thus, let Q = {τ1, τ2, . . . } be the set of tours
for all robots r1, r2, . . . in the base set F . Further, let qi be
an indicator taking value 1 if τi ̸= ∅ and 0 otherwise. Given
a budget B, tours Q are feasible when the cost of all robots



with non-empty tours do not exceed the budget, i.e.,
|Q|∑
i=1

qib(ri) ≤ B. (2)

a) Computational Hardness: It might not be surprising
that Problem 1 is intractable since it contains MRTA as a
subproblem. Nonetheless, we briefly study the hardness of
the problem in more detail to highlight two important details.

We begin with stating the decision version of the problem:
Given the inputs of Problem 1, does there exist a fleet such
that the reward jointly collected by the optimal tours for each
robot is larger or equal to some given constant? We make
two observations: First, in order to be a member of NP, a
certificate for Problem 1 consists of not only a fleet but also
a set of tours for the robots. Otherwise, the correctness of a
solution could not be verified without solving the underlying
vehicle routing problem. Second, the problem is also NP-
hard when the vehicle routing part is trivial. To show this,
we provide a reduction from the 0/1 knapsack problem.

Lemma 1 (NP-hardness). The decision version of Problem
1 is NP-hard.

Proof. We prove hardness via reduction from a 0/1 knapsack
problem [29]. Given an instance of Knapsack consisting of
a set of n items, their weights and profits and a budget (all
integer values), we construct a graph with a central depot and
exactly one vertex for each item. For each vertex, we create
several identical tasks with a deadline ≥ 1 and a requirement
unique to the item. The number of task copies for each item
equals the profit of the item. Further, let there be n robot
types r1, . . . rn with disjoint capabilities, each able to service
exactly one task. The robot costs b(ri) equal the weight of
the i-th item. Finally, all robot travel times equal 1, and
the battery life β = 2. Thus, each robot can visit exactly
one vertex, service all task copies located there, and return
to the depot. Finally, the budget B equals the budget of
the knapsack. A solution to the fleet design problem then
contains a set of of tours for robots. This can easily be
converted into a solution to the Knapsack problem: Looping
over the tours Q, we identify the tasks being serviced, which
directly correspond to items for the knapsack problem.

We observe that vehicle routing is trivial in the instance
created in the reduction: Each robot can only visit exactly
one vertex and then returns to the depot. This highlights
that the fleet design problem is computationally intractable,
regardless of the hardness of the underlying MRTA problem.

b) MILP Formulation: We present an MILP formula-
tion, adapting notation from MILPs for the TOP with time
windows [30]. Given the inputs of the problem we can
construct a complete graph Ḡ where vertices correspond
to all N task locations and the central depot. For each
robot type, the distance matrix D̄ then describes the shortest
distances on the original graph G. First, we create a copy
of the depot vertex where each robot’s tour will end such
that the graph has vertices 0, 1, . . . , N +1. Indices i, j refer
to vertices, index k identifies a robot ranging from 1 to K

where K = |F|. We use three binary decision variables. i)
xk
ij = 1 indicates that robot k traverses edge (i, j), ii) yki = 1

indicates robot k service task i, and iii) zk = 1 indicates if
robot k is used. We use two auxiliary variables: ski denotes
the time robot k visits vertex i and cki is a binary variable
indicating if robot k can service the task i. Lastly, let M be
some large constant. The MILP is then given by:

max

N∑
i=1

K∑
k=1

yki (3a)

s.t.

N∑
j=1

xk
0j =

N∑
j=1

xk
j,N+1 = zk (3b)

N+1∑
i=0,i̸=l

xk
il =

N+1∑
j=0,j ̸=l

xk
lj = ykl (3c)

ski + D̄k
ij − skj ≤M(1− xk

ij) (3d)
K∑

k=1

yki ≤ 1 (3e)

yki ≤ cki (3f)

ski ≤ yki · tdi (3g)
N∑
i=0

+1

( N∑
j=0

+1xk
ijD̄

k
ij

)
≤ βk (3h)

K∑
k=1

zkbk ≤ B (3i)

ski ≥ 0 (3j)

xk
ij , y

k
i ∈ {0, 1} ∀i, j = 0, . . . , N + 1; k = 1, . . . ,K.

(3k)

The objective (3a) counts the number of serviced tasks. (3b)
ensures that only activated robots leave the depot. (3c) and
(3d) establish connectivity and record the time a robot visits
a task. (3e-g) ensure that only one robot services each task,
a robot has the capabilities to service a task, and the task
is serviced before the deadline. (3h) and (3i) enforce the
battery life and budget constraints. Finally, (3j) and (3k)
ensure positive arrival times and initialize the variables.

B. Greedy Algorithm

To the best of our knowledge there are no state-of-the-
art methods for Problem 1. Thus, we introduce a greedy
algorithm to establish a baseline. Beginning with an empty
fleet F = ∅, Greedy iteratively adds the robot r∗ that solves:

r∗ = argmax
ri∈R

ρ(Qπ(F ∪ {ri}), T )− ρ(Qπ(F ), T )
bi

. (4)

The process is repeated until the budget is exhausted. How-
ever, MRTA itself is NP-hard and thus the greedy step cannot
be solved within polynomial time. Moreover, approximation
algorithms for MRTA are often not available under complex
constraints such as task deadlines. Thus, Greedy does not
have an approximation guarantee.



Algorithm 1: Fleet LNS
Input: Graph G, depot s, tasks T , robot classes R,

budget B, integer K.
Output: Robot fleet F and tours Q

1 Initialize tours Q = {∅, ∅, . . . } for all ri ∈ F
2 Q← Randomly generate feasible tours
3 Qbest ← Q
4 for k = 1 to K do
5 mode← Select Removal Mode // tasks or robots
6 Q′, T ′ ← Removal(Q, mode)
7 Qnew ← Repair(Q′, G, T ′, B)
8 if ρ(Qnew, T ) > ρ(Q, T ) then
9 Qbest ← Qnew

10 Q← Qnew

11 if Accept(Qnew, k) then
12 Q← Qnew

13 F ← robots with non-empty tours in Qbest

14 return F , Qbest

C. Fleet Optimization via Large Neighbourhood Search

We now present our large neighbourhood search (LNS)
approach to Problem 1. Beginning with an arbitrary initial
solution, LNS algorithms repeatedly remove parts of the
solution, e.g., vertices from a TSP tour, and then reinsert
these elements. This allows LNS approaches to solve large
instances of complex problems.

a) Algorithm Overview: We propose an integrated LNS
algorithm that simultaneously optimizes which robots are
part of the fleet and what route each robot takes. Thus, our
method uses two removal heuristics, allowing it to randomly
switch between a) changing which robots are currently part
of the fleet and b) improving the current tours. The main
procedure is summarized in Algorithm 1. We begin with a
randomly generated feasible solution Q. Over K iterations,
we select a mode for the removal heuristic and then remove
a subset of all tasks from the tours Q (line 6). We then re-
enter removed tasks T ′ into the subtours Q′ (line 7), and
update the current solution Q and best solution found thus
far Qbest(lines 8-9). Further, we use simulated annealing and
potentially accept a suboptimal new solution to allow for
more exploration in early iterations of the algorithm (lines
11-12). Next, we will present the two proposed removal
heuristics and the insertion heuristic in detail.

b) Removal Heuristics: We propose two removal
heuristics: Robot-removal and Task-removal to enable
replacing robots in the fleet and improving current tours.
Robot-removal selects a random subset of all robots and

deletes their tours entirely, effectively removing these robots
from the fleet. A tuning parameter nR defines an upper limit
for the size of the subset of robots that are removed. This
allows for replacing parts of the fleet with different robots
in the subsequent Repair step.
Task-removal removes a random subset of the tasks of

each current tour. Similar to the first heuristic, a parameter

Algorithm 2: Repair (Insertion heuristic)
Input: Graph G, current tours Q, tasks T ,

unassigned tasks T ′, budegt B.
Output: New tours Q′

1 Q′ ← Q
2 while T ′ is not empty do
3 T ← pop random task(T ′, Q′)
4 for ri in F do
5 τ ′i ← best insertion of T in tour τi
6 Qi ← Q′ ∪ τ ′i \ τi
7 Compute utility zi

8 if maxi zi > 0 then
9 Q′ ← feasible Qi with largest zi

10 return Q′

nT describes the maximum percent of tasks that can be
deleted. The subsequent Repair step then may improve the
tours without changing which robots are active (i.e., in the
fleet). Finally, the function Select Removal Mode randomly
chooses one of the heuristics following some bias premoval.

c) Insertion Heuristic: We now present our Repair

heuristic. Consider a robot ri with current tour τi, and some
task T . A maximum reward insertion then finds position
in the tour τi such that the reward of adding T at that
position is maximized. We notice that this is independent
of the other tours. Let Q be the current set of tours, and
let Qi denote the set of tours when T is added to robot ri.
One could then assign T to the robot ri where the marginal
gain ρ(Qi, T )−ρ(Q, T ) is largest. However, such a strategy
does not consider the cost of adding a new robot to the fleet.
Thus, we construct a utility function. First, we check if Qi is
feasible with respect to the budget B (equation (2)) and each
robots battery-life constraint. If Qi is infeasible, the utility is
zero. If the insertion is feasible, we compose the utility using
the marginal gain, a discount factor δi and a noise term η:

zi = (1 + η) δi (ρ(Qi, T )− ρ(Q, T )). (5)

The discount factor penalizes adding T to a robot which
currently has an empty tour. Thus, δi = 1 if τi is not empty.
Otherwise, δi is drawn randomly from {1, 1/β(ri)} with some
probability pdiscount, i.e., randomly discounts the marginal
gain with the robots deployment cost. Lastly, η =∈ [0, .1] is
a small uniformly random noise term, increasing exploration.

Given currently unassigned tasks T ′, we select a task ran-
domly (line 3) and then find the maximum reward insertion
into the current tour τi for every robot ri in the base fleet
F (lines 4-6). We compute a utility zi for the insertion Qi

(lines 7) and update the new set of tours Q′ (lines 8-9). This
is repeated until the set of unassigned tasks T ′ is empty.

d) Example Illustration: We provide an example of
the LNS algorithm in Figure 2. Here the budget constraint
allows for using at most three robots of any type. An initial
solution deploys two blue and one red robot, allowing the
fleet to service 7 of 11 tasks. In iteration 1, a Task-removal



(a) Initial solution.

(b) Iteration 1: Task-removal. (c) Iteration 1: Repair.

(d) Iteration 2:
Robot-removal.

(e) Iteration 2: Repair.

(f) Iteration 3: Task-removal. (g) Iteration 3: Repair.

Fig. 2: Illustration of Algorithm 1 over three iterations. The grey dot
is the depot, coloured dots are task locations. Blue and red robots
can only service tasks of their respective colour, purple robots can
service any task. Solid lines indicate current robot tours, dashed
lines show edges added during Repair. Robots in the ‘store’ are
currently not in the fleet and thus do not count towards the budget.

enables the upper blue robot to change its tour, increasing
the number of serviced tasks to 8 (subfigure b and c). This is
the best attainable solution for the current fleet. In the second
iteration, the algorithm performs a Robot-removal and
subsequently replaces the red robot with a purple one, which
is able to service yet another additional tasks (subfigure d and
e). Finally, by performing Task-removal again, the purple
robot takes over a task from the lower blue robot, allowing
the latter to service another previously neglected task. Thus,
in the final solution 10 out of 11 tasks are being serviced.

IV. SIMULATIONS

We evaluate our work in a series of simulation experi-
ments, comparing against two baselines.

A. Experiment Setup

a) Scenarios: We consider three scenarios: Experiment
1 has a simple setup with only three ground robots and two
task types. In Experiment 2 tasks have no deadlines, features
more task requirements and offers a larger variety of robots.
In Experiment 3 we consider ground robots and aerial robots
that jointly have to take different measurements, yet not all
measurements can be taken by either robot type. Further,

ID capabilities speed battery cost type

1 {1} 100% 200 20 AGV
2 {2} 100% 200 20 AGV
3 {1, 2} 150% 500 25 AGV

(a) Experiment 1.

ID capabilities speed battery cost type

1 {1} 100% 300 20 AGV
2 {2} 100% 300 20 AGV
3 {3} 100% 300 20 AGV
4 {1, 2, 3} 150% 300 30 AGV
5 {1, 2} 100% 250 25 AGV

(b) Experiment 2.

ID capabilities speed battery cost type

1 {1} 100% 300 20 AGV
2 {1, 2} 150% 300 25 AGV
3 {1, 3} 200% 300 20 UAV
4 {3} 200% 250 10 UAV
5 {1} 300% 250 15 UAV

(c) Experiment 3.

TABLE I: Different types of robots used in the Experiments.

ground robots have to avoid obstacles while aerial robots
can travel directly between task locations.

b) Baselines: We consider two baselines: Selecting
robots randomly until the budget is exhausted (Random), and
the greedy approach (Greedy) described in Section III-B. To
solve the underlying MRTA problem for computing (4) and
the final set of tours, we use another large neighbourhood
search that optimizes the tours for a fixed fleet. Using the
MILP as a baseline is impractical due to very high runtime
for even small instances. Our approach is labelled as LNS.

c) Algorithm parameter: The algorithm parameters are
set up as follows: Iteration budget K = 1000, bias for
random selection of removal heuristic premoval = 1/3, max. %
of robots removed by Robot-removal nR = 25, max. %
of tasks removed by Task-removal nT = 50, and bias to
neglect deployment cost in Repair pdiscount = 1/10.

d) Environment: We use a schematic real-world cam-
pus map, shown in Figure 3. Given uniformly sampled task
locations, we create a complete meta-graph, where vertices
correspond only to the depot and task locations, and edge
lengths are given by the shortest paths on a PRM. All task
deadlines are td = 150. We repeat experiments for 20 trials.

B. Results

a) Experiment 1: In the first experiment, we consider
two different task types and only three robot types with
varying capabilities and cost, summarized in Table Ia.

Figure 3 illustrates example solutions for Greedy and LNS

for N = 60 tasks and a budget of B = 70. Greedy iteratively
adds one robot with ID 1, 2, and 3, resulting in a fleet that
services 27 tasks before their deadlines. The LNS approach
assembles a fleet with one robot of type 2 and two robots of
type 3, allowing the fleet to service 38 tasks. The example
highlights the main shortcoming of a greedy approach: In
early iterations, low budget robots have a large marginal gain
and are thus selected. Yet, in later iterations the remaining



(a) Greedy solution. (b) LNS solution.

Fig. 3: Example for Experiment 1. Different colors indicate different
robot types from Table Ia (ID 1 – red, ID 2 – blue, ID 3 – green)

budget does not suffice to add multiple flexible robots that
could combine different task types. In contrast, LNS employs
multiple of the more expensive but also much more capable
type 3 robots, leading to more tasks being serviced.

We repeat the experiment for varying budgets and numbers
of tasks, and quantitative results are shown in Figure 4a.
With increasing budgets, all methods are able to service more
tasks. However, while Greedy performs only slightly better
than Random, the proposed method services significantly
more tasks under almost all settings. In particular, LNS only
requires roughly half of the budget (B = 50) to achieve
the same performance as the baselines with the full budget
(B = 100). For N = 20, LNS is able to service all tasks
as the budget increases. Overall, the relative performance of
the baselines becomes comparably poorer for larger N even
for the full budget B = 100: For N = 20 Greedy and LNS

service 100% of tasks. For N = 60, LNS still achieves 100%,
yet Greedy falls to 83% and for N = 100 they achieve 90%
and 70%, respectively. In summary, in the simple setup with
only few robot types the proposed method is able to find
substantially stronger solutions than a greedy approach.

b) Experiment 2: Experiment 2 extends the setup to
three task requirements and five available robots (see Table
Ib), and removes task deadlines. Figure 4b shows a similar
trend as in the first experiment, yet the larger budgets
allow all for more tasks being completed. LNS requires a
substantially smaller budget to match the best performance
of Greedy: To achieve≈ 100% serviced tasks under different
values for N = 20, 60, 100, LNS needs a budget of B = 80,
B = 120, and 120, while Greedy requires B = 100,
B = 140, and 180, respectively.

c) Experiment 3: The third experiment considers a data
collection mission where ground vehicles and drones take
measurements. There are four different task types, of which
some are exclusive to different robot types, as listed in Table
Ic. Similar to the other experiments, Figure 4c shows that LNS
consistently outperforms Greedy. For the different values of
N , Greedy achieves its highest performance for B = 160,
B = 200 and B = 200, respectively. LNS requires only
budgets of B = 100, B = 160 and B = 160, respectively, to
achieve the same number of serviced tasks. As in Experiment
2, the performance gap is largest for relatively small budgets.
This suggests that the performance of Greedy suffers from
suboptimal choices in early iterations. The LNS approach is
able to avoid these local optima and thus find better solutions.

d) Runtime: Overall, Greedy and LNS perform com-
parably for small problems (N = 20), running on average

(a) Experiment 1.

(b) Experiment 2.

(c) Experiment 3.

Fig. 4: Experimental Results: # serviced tasks for different budgets.

within 15s per instance. In Experiment 1, Greedy performs
better for large instances (N = 100), resulting in 150s com-
pared to 200s for LNS. However, Experiment 2 and 3 feature
more robots, causing the runtime of Greedy to increase
drastically to > 500s for the larger instances. In contrast, LNS
maintains an average runtime of 200s. Moreover, using only
100 iterations for LNS reduces its runtime by factor 10, yet
LNS still substantially outperforms Greedy in Experiments 1
and 2, and by a small margin in Experiment 3.

V. DISCUSSION AND FUTURE WORK

We studied the problem of designing heterogeneous robot
fleets for multi-robot task assignment. We provided a MILP
formulation and presented an LNS algorithm. In simulation
experiments, we demonstrated that the LNS approach con-
sistently finds better solutions than a greedy approach, i.e.,
requires smaller budgets to service the same number of tasks,
while its runtime scales better to large instances.

A limitation of our work is the simple cost model for robot
deployment. This could be extended to operation costs that
increases with the robot’s continued deployment. Further,
our experiment relied on synthetic data. Using real-world
robot models and realistic travel capabilities would highlight
the practical benefits of the proposed method. Lastly, we
considered tasks that are serviced independently, i.e., one
robot’s mission does not affect how another robot can service
its tasks. Yet, in some applications such as search-and-rescue,
one robot’s task completion might benefit other robots. This
poses further challenges to the fleet design problem.
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