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Abstract— Motion planning for autonomous robots in dy-
namic environments poses numerous challenges due to uncer-
tainties in the robot’s dynamics and interaction with other
agents. Sampling-based MPC approaches, such as Model Pre-
dictive Path Integral (MPPI) control, have shown promise in
addressing these complex motion planning problems. However,
the performance of MPPI relies heavily on the choice of sam-
pling distribution. Existing literature often uses the previously
computed input sequence as the mean of a Gaussian distribution
for sampling, leading to potential failures and local minima. In
this paper, we propose a novel derivation of MPPI that allows
for arbitrary sampling distributions to enhance efficiency, ro-
bustness, and convergence while alleviating the problem of local
minima. We present an efficient importance sampling scheme
that combines classical and learning-based ancillary controllers
simultaneously, resulting in more informative sampling and
control fusion. Several simulated and real-world demonstrate
the validity of our approach.

Website: autonomousrobots.nl/paper websites/biased-mppi

I. INTRODUCTION

Navigating autonomous robots through dense and dy-
namic environments poses a formidable challenge due to
significant uncertainties, including the robot’s state, model,
environmental conditions, and interactions with other agents.
Achieving desired behaviors under such conditions often
necessitates using intricate cost functions and constraints, re-
sulting in complex, nonlinear, non-convex, and occasionally
discontinuous problem formulations. The dynamic nature of
the environment introduces potential unexpected changes,
demanding rapid adaptability in the robot’s actions.

To address these challenges, one approach is to cast the
problem in a stochastic optimal control setting, where they
can be mathematically represented as stochastic Hamilton-
Jacobi-Bellman (HJB) equations. However, solving these
equations numerically can be challenging due to the curse
of dimensionality. Pioneering work demonstrated that the
stochastic HJB equations can be linearized for control-affine
systems, and their solution can be approximated through
sampling using the path integral formulation [1]. Imple-
mented in a receding horizon fashion, Model Predictive
Path Integral (MPPI) control [2], [3], and its Information-
Theoretic counterpart [4], [5] have been initially used for
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Fig. 1: Top: Usually, MPPI only takes samples around a pre-
vious plan. Here, the environment changes unexpectedly, and
all the sampled trajectories are in collision, which leads to
computing a new plan that also collides. Bottom: our Biased-
MPPI adds ancillary controllers to the sampling distribution,
quickly converging to a collision avoidance maneuver.

racing a small-scale rally car. MPPI has also been success-
fully applied to several other planning problems, such as
for autonomous vehicles with dynamic obstacles [6], solving
games [7], flying drones in partially observable environ-
ments [8], performing complex maneuvers [9] and used in
combination with adaptive control schemes [10]. It has also
been adapted to multi-agent systems for formation flying
[11], cooperative behavior [12], and simultaneous prediction
and planning [13]. Furthermore, MPPI has shown promise
in manipulating objects with robot arms [14] including
model uncertainties [15], in pushing tasks [16], [17] and
planning motion for four-legged walking robots [18]. MPPI
is a model-based approach that requires a model to forward
simulate trajectories given sampled inputs. Recent work has
utilized physics engines to simulate samples [19], [20],
eliminating the need for explicitly defining the dynamics
of agents and the environment, thus providing a significant
advantage in contact-rich manipulation tasks.

One of the critical challenges in applying MPPI to dy-
namic environments is ensuring the algorithm’s performance
and reliability. The success of MPPI heavily relies on the
choice of sampling distribution, which is crucial, especially
in real-time scenarios. Most existing literature uses the pre-
viously computed input sequence as the mean of a Gaussian
distribution for sampling [2], with the variance being tunable.
However, using the previous input sequence may trap the
algorithm in local minima. This can lead to catastrophic fail-
ures in the presence of unexpected disturbances or changes
in the environment [21] (Fig. 1).

This paper explores the application of MPPI in dynamic
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environments, emphasizing the need to improve its perfor-
mance and reliability in the face of unexpected disturbances
and rapidly changing conditions.

A. Previous Work
Several works tried to make the method more efficient

or more robust. Early work [22] proposed using Expectation
Propagation instead of Monte Carlo sampling, demonstrating
better efficiency in scenarios with hard constraints. Other
works instead accelerate the convergence of MPPI by lever-
aging gradient descent updates [23]. Another option to be
more reactive to environmental changes is to iteratively
converge to a solution through adaptive importance sampling
[24]. This, however, requires multiple iterations between
each planning time step, diminishing the parallelizability of
MPPI. Many other works propose improving the algorithm’s
convergence by somehow changing its sampling distribution.
This can be done by substituting the Gaussian used for
sampling with a different hand-crafted distribution [25] or
by directly learning a distribution from data [26], [27].
Given that MPPI allows for tuning the variance of the
sampling distribution [3], some works sought to improve the
efficiency of the scheme by adapting the covariance online
via covariance steering [28], [29]. Other ways to improve
efficiency can be to fit splines to the sampled inputs [14] or
to constrain the distribution to sample areas that are known
to contain low-cost trajectories [18]. Previous works have
also experimented with ancillary controllers. In [30], authors
propose to sample inputs around a path previously computed
by RRT. Other works instead robustify MPPI by switching
to an iLQG controller [21] or by integrating one into the
system’s model [31]. Previous work also compares an MPPI
that samples around a previously computed input, an input
sequence computed by a sequential linear-quadratic MPC,
and a learned sampling policy [18]. In general, however,
the original derivations of MPPI [5] only allow samples to
be drawn from a uni-modal Gaussian distribution, usually
centered around the previous control sequence, which can
hamper performance and reduce reactivity to unexpected
changes in the environment.

B. Contributions
We propose a Biased-MPPI, for which we provide math-

ematical derivations that allow for arbitrary changes to the
sampling distribution. We discuss the impact of introducing
biases in the sampling distribution on the overall method.
We experiment with an importance sampler that utilizes
multiple classical and learning-based ancillary controllers
simultaneously to take more informative samples, which can
be seen as a control fusion scheme. Through simulated and
real-world experiments, we demonstrate the impact of taking
suggestions from several underlying controllers on robust-
ness to model uncertainties and local minima, reactivity to
unexpected events, and sampling efficiency.

II. PRELIMINARIES

In this section, we provide a concise introduction to
the key concepts of MPPI within the Information-Theoretic

framework. For more details, we direct the reader to prior
research [5]. We begin by defining a function:

F(S,P, x0, λ) = −λ log

(
EP

[
exp

(
− 1

λ
S(V )

)])
(1)

which we will denote as the free energy of the system. Here,
V represents a sequence of inputs, P is a base measure, λ
is a tuning parameter, S(V ) is a cost, and x0 represents the
system’s initial state. It can be shown that:

F(S,P, x0, λ) ≤ EQ[S(V )] + λKL(Q||P). (2)

Here, Q represents a probability measure that characterizes
the controlled input distribution, and KL(Q||P) denotes the
KL-Divergence between the base measure and the controlled
measure. (2) signifies that the free energy serves as a lower
bound for the expected cost under the controlled distribution
plus a control cost represented by the KL-Divergence. Hence,
determining a control distribution that achieves this lower
bound minimizes the expected cost and control cost. We can
define a control distribution Q∗ through its Radon-Nikodym
derivative to the base measure:

dQ∗

dP
=

exp(− 1
λS(V ))

EP[exp(− 1
λS(V ))]

. (3)

Substituting Q with Q∗ in (2), we can prove that Q∗ is an
optimal control distribution in the sense that it achieves the
lower bound. The idea is now to align our control distribution
Q with the optimal distribution Q∗ though KL minimization,
which results in the optimal input sequence U∗:

U∗ = argmin
U

KL(Q∗||Q). (4)

Now, considering a discrete-time system:

xt+1 = F (xt, vt), vt ∼ N (ut,Σ). (5)

Here, xt ∈ Rn represents the state vector at time step t,
F (·) is the state transition model, vt ∈ Rm denotes the noisy
input, ut ∈ Rm is the commanded input, and Σ corresponds
to the natural input variance of the system. If P and Q are
the uncontrolled and controlled measures, respectively, we
can define them through their probability density functions:

p(V ) =

T−1∏
t=0

1

((2π)m|Σ|)1/2
exp

(
−1

2
vTt Σ

−1vt

)
q(V |U)=

T−1∏
t=0

1

((2π)m|Σ|)1/2
exp

(
−
1

2
(vt − ut)

TΣ−1(vt − ut)

)
.

It can be proven from (4) that the optimal control input at
time t is the mean input under the optimal distribution:

u∗
t =

∫
ΩV

q∗(V )vtdV. (6)

We can estimate such mean sampling from our controlled
distribution via importance sampling:

u∗
t =

∫
q∗(V )

q(V |U)
q(V |U)vtdV

= EQ[ω(V )vt],

(7)



with the importance sampling weight ω(V ) being:

ω(V ) =
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(8)

We can, therefore, sample K noisy input sequences:

V k = [vk0 , v
k
1 , · · · , vkt , · · · , vkTH

]

vkt ∼ N (ut,Σ)
(9)

where t is a time step and TH is the planning horizon. A
practical choice often made in MPPI is to take ut as a time-
shifted version of the previously computed approximation
of the optimal control sequence. We roll out the sampled
V k into state trajectories using the system’s model F (·),
evaluate their cost S(V ), compute the weights ω(V ), get
a new estimate of the optimal input sequence U∗ via (7)
and iterate. In (8), the control cost is multiplied and divided
by λ. Not having control over the magnitude of the terms
at the exponential can cause numerical issues. A change of
base measure P can solve the problem [5]. One might also
need a higher variance Σs for sampling compared to the
natural variance of the system Σ [32]. This again introduces
terms at the exponential independent from λ. Moreover,
introducing an arbitrary, potentially multi-modal sampling
distribution Qs is difficult. All these issues stem from the
ratio p(v)/q(V |U) in (8). Our approach addresses this by
showing that accepting a bias in the solution can eliminate
the ratio and allow for arbitrary sampling distributions.

III. PROPOSED APPROACH

A. Biased-MPPI

Let us first redefine the cost function as:

S̃(V ) = S(V ) + λ log

(
p(V )

qs(V )

)
. (10)

We then define the free-energy with this new cost:

F(S̃,P, x0, λ) = −λ log
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(
− 1

λ
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= −λ log
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(11)

where, as in [5], we applied Jensen’s inequality. We can
simplify the right-hand side as follows:

∗ = −λEQ

[
− 1

λ
S̃(V ) + log

(
p(V )

q(V )

)]
= −λEQ

[
− 1

λ
S(V )− log
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)
+ log

(
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q(V )

)]
= EQ [S(V )] + λEQ

[
log

(
p(V )

qs(V )

q(V )

p(V )

)]
= EQ [S(V )] + λKL(Q||Qs).

The free energy inequality is then:

F(S,P, x0, λ) ≤ EQ [S(V )] + λKL(Q||Qs). (12)

Thus, while we start with S̃(V ), the free energy serves
as a lower bound for the expected original cost S(V )
under the controlled distribution plus lambda times the KL-
Divergence between the controlled and sampling distribution.
An optimal control distribution achieving the lower bound
would minimize the original cost S(V ) while pushing the
controlled distribution to align with the sampling distribution,
effectively introducing a bias toward the sampling distribu-
tion. We define a controlled distribution Q∗ as:

dQ∗

dP
=

exp(− 1
λ S̃(V ))

EP[exp(− 1
λ S̃(V ))]

.

Under Q∗, the KL-Divergence becomes:
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Substituting into (12) and simplifying leads to:

F(S̃,P, x0, λ) ≤ −λ log

(
EP

[
exp

(
− 1

λ
S̃(V )

)])
= F(S̃,P, x0, λ).

This proves that Q∗ is the optimal distribution in that it
achieves the lower bound in (12). Following the steps in [5],
we can align our controlled distribution Q to Q∗ as in (6),
except we can now use our sampling distribution:

u∗
t = EQs

[ω(V )vt], (13)

with importance sampling weights:
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η
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(14)

Note that our change of cost (10) resulted in the optimal
control being biased towards the sampling distribution, as
shown in (12). However, this simplified the weights ω(V )
and allowed us to design arbitrary sampling distributions
Qs. In [5], S(V ) was defined as the state-dependent cost.
However, this restriction was made to relate the approach
to path integral control [1]. Such relation was only shown
exactly when P is the distribution induced by an uncontrolled
continuous-time control-affine system. This restriction is
not required in the Information-Theoretic framework, which
allows for a larger class of systems, and one can add input
costs in S(V).



B. Sampling from Ancillary Controllers

There are several ways one could design an arbitrary
sampling distribution. This paper focuses on taking most
samples around a previously computed input distribution and
some samples from hand-crafted policies.

In particular, we design a set of task-specific ancil-
lary controllers, these being, e.g., open-loop motion prim-
itives, reference tracking feedback controllers, or learning-
based strategies to propose J input sequences U j =
[uj

0, u
j
1, . . . , u

j
t , . . . , u

j
TH

]. These ancillary controllers are de-
scribed for each experiment in Sections IV and V. We then
choose the K sampled input sequences V k

s as,

V k
s =

{
U j , with j = k if k ≤ J

V k, as in (9) if k > J,
(15)

meaning that, at each time step, we take one sample from
each of the J ancillary controllers, and the remaining K−J
samples are taken according to the classical MPPI strategy.

C. Autotuning the Inverse Temperature

As in [20] and similarly to [18], we autotune the inverse
temperature λ online based on the normalization factor η.

λt+1 =


0.9λt if η > ηmax

1.2λt if η < ηmin

λt otherwise
(16)

In all experiments, this can roughly keep the number of
samples with a significant weight between ηmin and ηmax.

IV. ILLUSTRATIVE EXPERIMENT

We apply our Biased-MPPI to a rotary inverted pendulum
[33] (Fig. 2) in simulation to visualize its main features.

Fig. 2: Left, Quanser Qube-Servo, and right, its diagram. The
arm’s rotation, θ, is the actuated angle. The angle between
the pendulum and the upright position, α, is not actuated.

A. Swing-up and tracking

Starting at the bottom equilibrium with θ0 = 0 and α0 =
π, the task is to swing up the pendulum to αr = 0 while
keeping the arm close to θr = 1. Thus, the running cost is:

Cp(x(t)) = 100((θt−θr)
2+(αt−αr)

2)+ θ̇t
2
+2α̇t

2. (17)

The system has dynamics x(t + 1) = F (x(t), u(t)), where
the state of the system at time-step t is denoted as x(t) =
[θt, αt, θ̇t, α̇t]

T , and u represents the system’s input. The
nonlinear model is derived from the Lagrange equations. To

design linear controllers, the model is linearized at the top
equilibrium using Euler-Lagrange’s method [34]. To show-
case resilience against model uncertainties, the parameters
of the simulation’s pendulum model are multiplied by 1+ γ
in each experiment, where γ ∼ N (0, 0.05). The seed is
consistent across methods. The system is dicretized and
controllers run at 50Hz, the controller plans TH = 50 steps
ahead (1s), covariance Σs = 0.5, ηmin = 2 and ηmax = 5.

1) Ancillary Controllers: We design three ancillary con-
trollers as a baseline and to guide the sampling strategy.

a) A Linear Quadratic Regulator (LQR): designed us-
ing the lqr command in Matlab, stabilizes the pendulum at
the top equilibrium.

b) A Linear Quadratic Integral (LQI): tracks the refer-
ence θr while maintaining the pendulum at the top equilib-
rium. It is synthesized with the lqi command in Matlab.

c) A nonlinear Energy-Based Controller (EBC): is de-
signed as in [34] to swing up the pendulum to the top equi-
librium by increasing the potential energy of the system [35].

2) Switching Controller: We introduce as baseline a
switching strategy (18) that combines all ancillary con-
trollers. It swings up the pendulum using the input from the
ECB, uebc, until α is within αcatch = 0.2 of the top equi-
librium. The LQR controller, with ulqr, then stabilizes the
pendulum. Once the pendulum is close to the top equilibrium
(αtrack = 0.05) with angular velocity below α̇track = 0.1
rad/s, the LQI, with ulqi, is engaged for reference tracking.

u =


ulqi, if (|α| < αtrack) ∩ (|α̇| < α̇track)

ulqr, if (|α| < αcatch)

uebc, otherwise
(18)

3) Results: Fig. 3 depicts a pendulum experiment’s input
and state evolution with Biased-MPPI, also showcasing the
samples taken and the ancillary controllers’ influence on
the plan. At the beginning of the experiment, ECB rapidly
swings up the pendulum, heavily influencing Biased-MPPI’s
planned input. Once near equilibrium, LQR provides a stabi-
lizing sequence, closely tracked by Biased-MPPI. As stability
is achieved, LQI suggests an input sequence swiftly bringing
the arm towards the reference, albeit with high velocities.
Hence, Biased-MPPI, while influenced by LQI, opts for a
lower amplitude input sequence due to cost function (17).

Fig. 4 displays the distribution of total costs, defined
as

∑Tend

t=0 Cp(x(t)) where Tend = 250 (5s) is the end of
the episode, and the distribution of total efforts, defined as∑Tend

t=0 |u(t)|, across 50 experiments. Biased-MPPI consis-
tently outperforms both the switching strategy and the classic
MPPI, regardless of the number of samples used. Moreover,
the results indicate that including ancillary controllers in the
proposed Biased-MPPI vastly improves the sampling effi-
ciency, requiring fewer samples for better performance and
enhancing the algorithm’s robustness to model uncertainties.

V. SIMULATED MOTION PLANNING EXPERIMENTS

Interaction-Aware (IA) MPPI [13] is a decentralized
communication-free motion planning method that predicts
short-term goals of other agents with a constant velocity



Fig. 3: Input and state evolution during a pendulum experiment with Biased-MPPI. We show the samples taken and the
resulting planned input sequence over the planning horizon for three instances. While we sample all ancillary controllers in
each instance, we highlight the one with the most influence on the planned input sequence.

Fig. 4: Total cost and control effort over 50 pendulum swing-
ups with randomized model parameters.

model and, under homogeneity and rationality assumptions,
each agent simultaneously plans and predicts motions for all
agents. In its cost function, IA-MPPI encourages adherence
to navigation rules, such as giving the right-of-way to agents
from the right and preferring the right-hand side during head-
on encounters. We will investigate the effects of biasing
its sampling scheme with ancillary controllers. The agents
are vessels modeled using Roboat’s model [36]. Controllers
run at 10Hz, plan TH = 100 steps ahead (10s), with
Σs = diag(6, 6, 0.12, 0.12), ηmin = 5 and ηmax = 10.

A. Solving an Intersection

An issue that can arise with classical MPPI formula-
tion, which only takes samples around what was previously
considered to be optimal, is the difficulty, once in one, of
jumping out of local minima. This is particularly evident in
IA-MPPI, especially in a crossing scenario. In this experi-
ment, depicted in Fig. 5, two identical vessels start with zero
velocity and have to cross each other’s paths. In their cost
function, described in previous work [13], the decentralized
and communication-free IA-MPPI is encouraged to get each

of the vessels across the intersection while being penalized
for not yielding to the agent coming from the right-hand side.

1) Ancillary Controllers: To help switch out of local
minima and improve sampling efficiency, four ancillary
controllers are sampled using the proposed Biased-MPPI.

a) Go-Slow: a sequence of inputs commanding a small
amount of thrust to the vessel’s side thrusters.

b) Go-Fast: commands a large thrust.
c) Braking: gives a zero velocity reference.
d) Go-to-Goal: computes a velocity reference that

takes each vessel towards its corresponding local goal at each
time step of the planning horizon.

The velocity references proposed by the Braking and
Go-to-Goal maneuvers are converted to input thrusts with
a linear H∞ controller, which is robust to model non-
linearities, designed using the musyn command in Matlab.

2) Results: With an initial velocity of zero, each agent
anticipates an unobstructed intersection crossing. This ex-
pectation is based on a constant velocity prediction, as they
assume the opposing agent will remain stationary. In Fig. 5a,
the classic IA-MPPI fails to switch from planning to cross
first to a slower maneuver that yields since all of the samples
are taken around the previous plan, leading to a collision.
In Fig. 5b, our Biased-IA-MPPI approach can swiftly switch
between modes when it becomes evident that the vessel with
the right-of-way will cross the intersection.

In Table I, we see that in 50 experiments, our Biased-
IA-MPPI achieves zero collisions and rule violations for
any number of samples, compared to the IA-MPPI based
on the classical MPPI sampling scheme, which results in
several. Thanks to the ancillary controllers, our Biased-IA-
MPPI also travels straight to the goal, reducing the distance
traveled. While our Biased-IA-MPPI has a lower variance
in arrival times, it is not always faster on average. This
confirms the results proved in (12), i.e. the Braking and Go-
Slow maneuvers are biasing towards a slower trajectory.



(a) Using a classical MPPI sampling scheme, the agents remain in a local minimum where both want to pass first, resulting in a collision.

(b) Using the proposed Biased-IA-MPPI, the orange agent gives way to the blue agent as soon as it is clear that both agents want to cross.

Fig. 5: Two vessels cross each other’s path while penalized when not giving the right-of-way to agents coming from
their right. The large circles are the agents’ true local goals extracted from a global path. IA-MPPI is decentralized and
communication-free, so the small dots are the goals vessels estimate of one another using constant velocity. The trajectories
in blue are those the blue agent has planned for itself and predicted for the other, and the same goes for the orange agent.

TABLE I: Results of 50 crossings for an increasing number
of samples K. Metrics are reported for successful runs.

K Method Collisions
Experiments Average Average
With Rule Time to Distance
Violations Arrival [s] Traveled [m]

50

IA-MPPI 4 9 16.41 ± 10.10 21.89 ± 8.433
Biased-IA-MPPI 0 0 17.64 ± 3.128 19.13 ± 2.466

20
0 IA-MPPI 10 4 12.77 ± 9.323 19.99 ± 10.16

Biased-IA-MPPI 0 0 12.66 ± 1.902 18.07 ± 2.012

50
0 IA-MPPI 7 11 11.02 ± 2.731 18.70 ± 3.518

Biased-IA-MPPI 0 0 11.43 ± 1.541 17.58 ± 1.880

10
00 IA-MPPI 10 15 11.78 ± 3.823 19.31 ± 3.539

Biased-IA-MPPI 0 0 11.00 ± 1.309 17.35 ± 1.625

20
00 IA-MPPI 7 15 11.10 ± 4.101 19.72 ± 5.038

Biased-IA-MPPI 0 0 10.68 ± 1.245 17.27 ± 1.716

B. Interaction-Aware Planning with Four Vessels

To further test Biased-IA-MPPI, we run 50 experiments
with randomized initial conditions and goals, where four
agents have to navigate in cooperation in the Herengracht,
an urban canal in Amsterdam, challenging due to its narrow
sections under two bridges. The canal map and an example
of successful navigation are shown in Fig. 6.

1) Ancillary Controllers: We use all of the ancillary
controllers described in Section V-A.1. Additionally, we use
a learning-based trajectory prediction model adapted and
trained for urban vessels [37]. However, we do not use this
model for predictions. We track the trajectories it provides
with an H∞ controller to generate input sequences, which
Biased-MPPI can consider in its sampling scheme.

Fig. 6: Four agents navigating in the Herengracht. Video.

2) Results: In Table II, results from 50 experiments show
that with 50 samples, our Biased-IA-MPPI is cautious,
leading to 10 deadlocks, possibly biased by the Braking
maneuver. In contrast, the conventional IA-MPPI approach,
without the ancillary controller, results in 16 collisions.

As the number of samples increases, the bias from the
ancillary controllers diminishes, causing Biased-IA-MPPI to
behave less conservatively. Consequently, the number of
deadlocks approaches zero, but a few collisions may occur.
With both methods, over half of the successful experiments
incur at least a rule violation. In these crowded scenes,
violations are common, e.g., not stopping to yield to an
agent with priority when it is still relatively far away. Still,
in both collision counts and the number of experiments
resulting in rule violations, our Biased-IA-MPPI consistently
outperforms IA-MPPI using the traditional sampling method.

Fig. 7 displays both methods’ quartiles, min, max, and
outliers of successful experiments. The ancillary controllers
direct the sampling distribution towards lower-cost areas
of the state space, significantly reducing travel distances.
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TABLE II: Results for 50 runs of four-agent experiments in
the Herengracht with randomized initial conditions and goals
for an increasing number of samples K.

K Method Successes Deadlocks Collisions
Experiments
With Rule
Violations

50

IA-MPPI 34 0 16 22
Biased-IA-MPPI 40 10 0 18

20
0 IA-MPPI 43 1 6 34

Biased-IA-MPPI 46 1 3 28

50
0 IA-MPPI 47 0 3 36

Biased-IA-MPPI 49 0 1 35

10
00 IA-MPPI 45 0 5 36

Biased-IA-MPPI 50 0 0 33

20
00 IA-MPPI 47 0 3 36

Biased-IA-MPPI 49 0 1 34

Fig. 7: Agents’ traveled distance and travel time over 50
experiments in the Herengracht. Metrics are reported for
experiments that were successful with both methods.

Despite this, as predicted by (12), Biased-IA-MPPI also
exhibits a bias towards slightly slower movement due to
“Braking” and “Go-Slow” maneuvers, resulting in similar
travel times as the regular IA-MPPI.

VI. REAL-WORLD MOTION PLANNING EXPERIMENT

A Clearpath Jackal robot attempts to drive to a goal as
fast as possible (∼ 2m/s) while avoiding a box. Halfway
through, the box is thrown in front of the robot. The position
and the velocity of the box and the robot are estimated using
information from a motion capture system. The velocity-
controlled robot is modeled as a unicycle, and the box’s
position is propagated through the planning horizon using
a constant velocity model. The cost function is defined as,

Cj(x(t)) = ||pt,r − pg||+ 100(||pt,r − pt,b|| < 0.5) (19)

where pt,r, pg and pt,b are the position of the robot, the goal,
and the box, respectively, at time t. Controllers run at 10Hz,
plan TH = 50 steps ahead (5s), with K = 300 samples,
covariance Σs = 0.5 · I2×2, ηmin = 5 and ηmax = 10.

Fig. 8: Visualized are the top 50 sampled trajectories, color-
graded by their cost. (a) Classic MPPI is about to crash. (b)
Our Biased-MPPI avoids collision. See video.

1) Ancillary Controllers: We sample a Braking maneuver,
i.e., a zero velocity reference throughout the horizon.

2) Results: Fig. 8 shows the top 50 sampled trajecto-
ries sampled by (a), MPPI, and (b), our proposed Biased-
MPPI. When the box is unexpectedly thrown in front of
the robot, MPPI only samples trajectories that collide with
the box. Given the cost function, MPPI prefers the samples
that remain in collision for the least time. On the other
hand, sampling also a zero velocity reference, Biased-MPPI
quickly converges to a braking maneuver, avoiding the col-
lision altogether. MPPI resulted in six collisions in over ten
experiments, while Biased-MPPI resulted in none.

VII. CONCLUSIONS

In this paper, we have derived a sampling scheme for
Model Predictive Path Integral (MPPI) control that removes
computationally problematic terms and allows for the design
of arbitrary sampling distributions as long as a bias in the so-
lution is allowed. We proposed using classical and learning-
based ancillary controllers for several control and motion
planning experiments to bias the sampling distribution and
achieve more efficient sampling and better performances.
We demonstrated how the proposed algorithm can act as
a control fusion scheme, taking suggestions from an arbi-
trary number of controllers and improving upon them. The
resulting Biased-MPPI was shown to be better performing
and more robust to model uncertainties compared to classical
controllers and the baseline MPPI method, achieving faster
swing-ups for a rotational inverted pendulum as well as safer,
closer to optimal trajectories in interaction-aware motion
planning experiments in constrained multi-agent environ-
ments, all while requiring less samples. The overall gains
in safety, performance, and sample efficiency come at the
expense of a potentially harmful bias, as shown with the
sampling of Braking and Go-Slow maneuvers, which can
result in slower trajectories. In the future, our approach could
be employed as a potential solution to complex multi-modal
problems. For example, a higher-level task planner could
propose several ancillary controllers and alternative plans,
which could all be sampled to achieve global solutions.

https://autonomousrobots.nl/paper_websites/biased-mppi
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[11] V. Gómez, S. Thijssen, A. Symington, S. Hailes, and H. J. Kap-
pen, “Real-time stochastic optimal control for multi-agent quadrotor
systems,” in International Conference on Automated Planning and
Scheduling, vol. 2016, Mar. 2016, pp. 468–476.

[12] N. Wan, A. Gahlawat, N. Hovakimyan, E. A. Theodorou, and P. G.
Voulgaris, “Cooperative Path Integral Control for Stochastic Multi-
Agent Systems,” in 2021 American Control Conference, May 2021,
pp. 1262–1267.

[13] L. Streichenberg, E. Trevisan, J. J. Chung, R. Siegwart, and J. Alonso-
Mora, “Multi-Agent Path Integral Control for Interaction-Aware Mo-
tion Planning in Urban Canals,” in 2023 IEEE International Confer-
ence on Robotics and Automation, May 2023, pp. 1379–1385.

[14] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots, “STORM: An Integrated Framework for Fast
Joint-Space Model-Predictive Control for Reactive Manipulation,” in
5th Annual Conference on Robot Learning, Jun. 2021.

[15] I. Abraham, A. Handa, N. Ratliff, K. Lowrey, T. D. Murphey, and
D. Fox, “Model-Based Generalization Under Parameter Uncertainty
Using Path Integral Control,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 2864–2871, Apr. 2020.

[16] E. Arruda, M. J. Mathew, M. Kopicki, M. Mistry, M. Azad, and
J. L. Wyatt, “Uncertainty averse pushing with model predictive path
integral control,” in 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics, Nov. 2017, pp. 497–502.

[17] L. Cong, M. Grner, P. Ruppel, H. Liang, N. Hendrich, and J. Zhang,
“Self-Adapting Recurrent Models for Object Pushing from Learning in
Simulation,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct. 2020, pp. 5304–5310.

[18] J. Carius, R. Ranftl, F. Farshidian, and M. Hutter, “Constrained
stochastic optimal control with learned importance sampling: A path
integral approach,” The International Journal of Robotics Research, p.
02783649211047890, Oct. 2021.

[19] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive Sampling: Real-time Behaviour Synthesis with

MuJoCo,” Dec. 2022. [Online]. Available: http://arxiv.org/abs/2212.
00541

[20] C. Pezzato, C. Salmi, M. Spahn, E. Trevisan, J. Alonso-Mora, and
C. H. Corbato, “Sampling-based Model Predictive Control Leveraging
Parallelizable Physics Simulations,” Jul. 2023. [Online]. Available:
http://arxiv.org/abs/2307.09105

[21] G. Williams, B. Goldfain, P. Drews, K. Saigol, J. Rehg, and
E. Theodorou, “Robust Sampling Based Model Predictive Control with
Sparse Objective Information,” in Robotics: Science and Systems XIV,
Jun. 2018.

[22] T. Mensink, J. Verbeek, and B. Kappen, “EP for efficient stochastic
control with obstacles,” in Frontiers in Artificial Intelligence and
Applications, vol. 215, Aug. 2010, pp. 675–680.

[23] M. Okada and T. Taniguchi, “Acceleration of Gradient-Based Path
Integral Method for Efficient Optimal and Inverse Optimal Control,”
in 2018 IEEE International Conference on Robotics and Automation,
May 2018, pp. 3013–3020.

[24] D. M. Asmar, R. Senanayake, S. Manuel, and M. J. Kochenderfer,
“Model Predictive Optimized Path Integral Strategies,” in 2023 IEEE
International Conference on Robotics and Automation, May 2023, pp.
3182–3188.

[25] I. S. Mohamed, K. Yin, and L. Liu, “Autonomous Navigation of AGVs
in Unknown Cluttered Environments: Log-MPPI Control Strategy,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 240–
10 247, Oct. 2022.

[26] R. Kusumoto, L. Palmieri, M. Spies, A. Csiszar, and K. O. Arras,
“Informed Information Theoretic Model Predictive Control,” in 2019
IEEE International Conference on Robotics and Automation, May
2019, pp. 2047–2053.

[27] T. Power and D. Berenson, “Variational Inference MPC using Normal-
izing Flows and Out-of-Distribution Projection,” in Robotics: Science
and Systems XVIII, vol. 18, Jun. 2022.

[28] I. M. Balci, E. Bakolas, B. Vlahov, and E. A. Theodorou, “Constrained
Covariance Steering Based Tube-MPPI,” in 2022 American Control
Conference, Jun. 2022, pp. 4197–4202.

[29] J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Trajectory Dis-
tribution Control for Model Predictive Path Integral Control using
Covariance Steering,” in 2022 IEEE International Conference on
Robotics and Automation, May 2022, pp. 1478–1484.

[30] O. Arslan, E. A. Theodorou, and P. Tsiotras, “Information-theoretic
stochastic optimal control via incremental sampling-based algorithms,”
in 2014 IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning, Dec. 2014, pp. 1–8.

[31] M. S. Gandhi, B. Vlahov, J. Gibson, G. Williams, and E. A.
Theodorou, “Robust Model Predictive Path Integral Control: Analysis
and Performance Guarantees,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 1423–1430, Apr. 2021.

[32] G. R. Williams, “Model predictive path integral control: Theoretical
foundations and applications to autonomous driving,” Ph.D.
dissertation, Georgia Institute of Technology, Mar. 2019. [Online].
Available: https://smartech.gatech.edu/handle/1853/62666

[33] Q. Inc., “QUBE - Servo 2 - Quanser.” [Online]. Available:
https://www.quanser.com/products/qube-servo-2/
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